Title Sinteza procesa iz tokova podataka temeljena na induktivnom strojnom učenju.
Title (english) Process synthesis from data streams based on inductive machine learning.
Author Ivona Zakarija
Mentor Bruno Blašković (mentor)
Committee member Bruno Blašković (član povjerenstva)
Granter University of Zagreb Faculty of Electrical Engineering and Computing (Department of Electrical Engineering Fundamentals and Measurements) Zagreb
Defense date and country 2020, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Electrical Engineering Automation and Robotics
Universal decimal classification (UDC ) 621.3 - Electrical engineering
Abstract Sinteza procesa iz tokova podataka temeljena na induktivnom strojnom učenju Tema ove disertacije je istraživanje mogućnosti primjene tehnika dubinske analize procesa na dnevničke podatke kako bi se iz obrazaca ponašanja zabilježenih u dnevniku sintetizirao formalni model procesa. U teorijskom dijelu rada dane su teorijske osnove i formalne definicije najvažnijih pojmova, te su opisane teorijske postavke istraživanja. U radu je dan pregled relevantnih povezanih istraživanja iz područja dubinske analize procesa. U ovoj disertaciji razvijena je metoda za sintezu, analizu i popravak modela procesa. Predložena metoda sastoji se od pripreme podataka, otkrivanja modela procesa, analize i popravka otkrivenog procesnog modela. Metoda za sintezu procesa temelji se na algoritmima i tehnikama iz induktivnog strojnog učenja, a njom se dobiva pregledni model procesa u obliku konačnog automata čiji prijelazi odgovaraju redoslijedu aktivnosti iz dnevničkih datoteka. Pristup opisan u ovoj disertaciji temelji se na induktivnom strojnom učenju koje je realizirano kroz kombinatorni pristup induktivnog programiranja (ILP) i transformacija modela. Vrednovanje metode za analizu, sintezu i popravak procesa provedeno je simulacijama i verifikacijama u alatu za provjeru modela Spin. Kao studijski primjer uzeti su dnevnički podatci iz informacijskog sustava za odmorišnu djelatnost. Verifikacija je provedena nad reprezentativnim procesnim modelom uz šest definiranih različitih specifikacija. Verifikacijom je potvrđeno da dobiveni procesni model zadovoljava postavljene specifikacije. Rezultati vrednovanja otkrivenih procesnih modela potvrđuju da su primjenom predložene metode dobiveni procesni modeli koji dobro odražavaju stvarnost. U ovoj disertaciji predložen je i postupak za provjeru sukladnosti. Primjenom predloženog postupka izvršava se procesni modela tako da se za svaku sekvencu događaja provjerava da li zadani automat (procesni model) sadržava riječ iz testnih podataka (sekvencu događaja). Usklađenost modela s dnevnikom mjeri se sa stajališta klasifikacije te se postavlja u kontekst kvalitete rezultata dubinske analize procesa. Najveći dio istraživanja u području dubinske analize procesa vezan je uz algoritme za otkrivanje procesnih modela, a još uvijek je mali broj tehnika i alata za popravak procesa. Metoda za popravak procesa zasnovana na protuprimjerima predložena je u ovom radu. Proveden je postupak popravka procesa na studijskom primjeru u IoT sustavu Smart Parking, gdje su korišteni dnevnički podatci dobiveni iz dnevnika senzora za parkiranje.
Abstract (english) The main thesis of this dissertation is the research for possibilities of applying process mining techniques on event log data to synthesize formal process model from the behavioural patterns recorded in the log. In the theoretical part of the thesis, the theoretical foundations and formal definitions of the most important terms are given, additionally, the theoretical assumptions of the research are described. Furthermore, an overview of relevant related research in the area of process mining is provided. In this dissertation, a process mining method for process synthesis, analysis and repair is proposed and described in detail. The proposed method is composed of data preparation, process discovery, analysis and repair of the discovered process model. Process synthesis method is based on Inductive machine learning algorithms and techniques. Starting from raw event log data, through several automated model transformations, the proposed process synthesis method discovers the process model in labelled transition system notation. The approach described in this dissertation is based on inductive machine learning that is realized through a combinatorial approach of inductive programming (ILP) and model transformations. Model checking is used to analyse and evaluate results of the proposed method. Accordingly, evaluation of the method for process synthesis, analysis and repair was performed by simulations and verifications in the Spin model checker. As a case study actual event log data obtained from a hotel’s Property Management System (PMS) were used for process mining. Verification was performed on a representative process model under six different specifications defined. The verification confirmed that the resulting process model complies to the given specifications. The results obtained from discovered process models evaluation confirmed the efficiency of the proposed approach, furthermore, process models discovered by applying the process synthesis method are in line with reality. Additionally, in this thesis a conformance checking technique is proposed. By applying the proposed technique, the process model is executed so that for each sequence of events it is checked whether the given automaton (process model) contains a word from the input data (sequence of events). Accordingly, the conformance of the model and log is measured from the classification point of view in the context of the process mining quality measures. The vast majority of the research in the process mining field is related to algorithms for process discovery, and still, there are a small number of techniques and tools for process repair. A process repair method based on counterexamples is proposed in this dissertation. The process repair was performed on a case study in the Smart Parking Internet of Things (IoT) system, where the event data obtained from the parking sensor log were used.
Keywords
dubinska analiza procesa
provjera modela
induktivno strojno učenje
veliki podatci
sinteza procesa
popravak procesa
provjera sukladnosti
automatizirana simulacija i verifikacija modela procesa
IoT
Keywords (english)
process mining
model checking
inductive machine learning
Big Data
process synthesis
process repair
conformance checking
automated simulation and verification of process models
IoT
Language croatian
URN:NBN urn:nbn:hr:168:705385
Promotion 2020
Study programme Title: Doctoral study programme "Electrical Engineering and Computing" Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, po-dručje tehničkih znanosti (doktor/doktorica znanosti, po-dručje tehničkih znanosti)
Catalog URL https://lib.fer.hr:8443/cgi-bin/koha/catalogue/detail.pl?biblionumber=51884&searchid=scs_1600097788835
Type of resource Text
Extent 120 str.
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2020-09-14 15:46:28