Title Prediction of human performance based on psychophysiological features of resilience and machine learning
Title (croatian) Predvidanje performanci ljudi temeljeno na psihofiziološkim značajkama rezilijentnosti i na strojnom učenju
Author Marko Šarlija
Mentor Krešimir Ćosić (mentor)
Mentor Siniša Popović (komentor)
Committee member Krešimir Ćosić (član povjerenstva)
Committee member Siniša Popović (član povjerenstva)
Granter University of Zagreb Faculty of Electrical Engineering and Computing (Department of Electric Machines, Drives and Automation) Zagreb
Defense date and country 2021, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Computing
Universal decimal classification (UDC ) 004 - Computer science and technology. Computing. Data processing
Abstract Stress resilience is defined as a stress coping ability enabling positive adjustment to adverse events. Resilience is recognized as an important occupational factor that influences the performance and health in soldiers, first responders, air traffic controllers and other highly stressful professions. In the context of exposure to potentially traumatic events, the absence of trauma-related psychiatric disorder symptoms is seen as an indicator of resilience. However, in a task-related context resilience is defined as the ability of maintaining normal psychological and physical functioning, when exposed to extraordinary levels of stress and trauma, which is crucial in the context of a highly demanding, safety-critical, and stressful profession such as air traffic control (ATC). Given the above, objectivised assessment of stress resilience has recently emerged as an important research topic. The main problem with psychometric instruments for resilience assessment is their susceptibility to self-report bias, while various genetic, immunological, hormonal or neuroimaging markers of resilience often require expensive and long-lasting assessment procedures. Psychophysiological features of stress resilience are less susceptible to self-report bias than traditional psychological instruments, and could be measured, besides via high-end and highly reliable laboratory equipment, by using various wearable psychophysiological sensors which are nowadays being actively developed and improved. Therefore, the potential of the input-output paradigm for multimodal elicitation and analysis of psychophysiological features of resilience is recognized. This thesis proposes a method for elicitation and computation of psychophysiological features of stress resilience based on the analysis of peripheral physiological signals: electrocardiography (ECG), electromyography (EMG), electrodermal activity (EDA) and respiration; including methodological advances in computation of features related to respiratory sinus arrhythmia (RSA), acoustic startle response (ASR) and psychophysiological allostasis. Experimental validation has shown that the proposed multidimensional resilience feature space reveals differences between an a priori more-resilient and less-resilient group of participants. Furthermore, the predictive power of the obtained feature space is investigated by formulating a binary classification problem: prediction of high- vs. low-performance under stress. Experimental results show that the proposed method for prediction of human performance under stress based on psychophysiological features of resilience and machine learning yields a relatively high classification accuracy. Developed methods and the obtained results are discussed in the context of prior work, while considering limitations and proposing directions for future work.
Abstract (croatian) Rezilijentnost na stres definira se kao sposobnost nošenja sa stresom koja omogućuje pozitivnu prilagodbu na nepovoljne događaje. Rezilijentnost je prepoznata kao važan čimbenik koji utječe na performance i zdravlje kod vojnika, hitnih službi, kontrolora zračnog prometa te ostalih visoko stresnih zanimanja. U kontekstu izloženosti potencijalno traumatičnim događajima, pokazatelj rezilijentnosti bio bi izostanak simptoma psihičkih poremećaja povezanih s traumom. Međutim, u kontekstu obavljanja zadatka, rezilijentnost se također definira i kao sposobnost održavanja normalnog psihološkog i tjelesnog funkcioniranja prilikom izloženosti visokim razinama stresa odnosno traume, što je ključno u slučaju zahtjevnih, sigurnosno kritičnih zanimanja, poput kontrole zračnog prometa. S obzirom na navedeno, objektivizacija procjene rezilijentnosti prepoznaje se kao važno istraživačko pitanje. Glavni problem psihometrijskih instrumenata za procjenu rezilijentnosti je njihova podložnost pristranosti samoprocjene, dok razne genske, imunološke te značajke rezilijentnosti temeljene na oslikavanju mozga zahtijevaju skupe i dugotrajne postupke procjene. Psihofiziološke značajke rezilijentnosti manje su podložne pristranosti samoprocjene od tradicionalnih psihometrijskih instrumenata, a mogu se mjeriti, osim putem vrlo pouzdane laboratorijske opreme, korištenjem raznih nosivih senzora koji se danas aktivno razvijaju i poboljšavaju. Stoga je prepoznat potencijal ulazno-izlazne paradigme za multimodalnu elicitaciju i analizu psihofizioloških značajki rezilijentnosti. U ovoj disertaciji predlaže se metoda za elicitaciju i računanje psihofizioloških značajki za procjenu rezilijentnosti, temeljenih na analizi periferne fiziologije: elektrokardiografije (EKG), elektromiografije (EMG), elektrodermalne aktivnosti (EDA) i disanja; uključujući metodološke napretke u izračunavanju značajki povezanih s respiratornom sinusnom aritmijom (RSA), odzivom na zvučni prepadni podražaj i psihofiziološkom alostazom. Eksperimentalna je validacija pokazala da predloženi višedimenzionalni prostor značajki rezilijentnosti otkriva razlike između apriori više rezilijentne i manje rezilijentne skupine ispitanika. Nadalje, prediktivna snaga dobivenog prostora značajki istražena je formuliranjem binarnog klasifikacijskog problema: predviđanje visokih u odnosu na niske performance pod stresom. Eksperimentalni rezultati pokazuju da predložena metoda za predviđanje ljudskih performanci pod stresom, temeljena na psihofiziološkim značajkama rezilijentnosti i strojnom učenju, ostvaruje relativno visoku točnost klasifikacije. Razvijene metode i dobiveni rezultati razmatraju se u kontekstu dosadašnje literature, uz sagledavanje ograničenja rada i predlaganje smjernica za budući rad.
Keywords
stress resilience assessment
task performance
physiological signal processing
machine learning
air traffic control
respiratory sinus arrhythmia
acoustic startle response
Keywords (croatian)
procjena rezilijentnosti
performance
obrada signala periferne fiziologije
strojno učenje
kontrola zračnog prometa
respiratorna sinusna aritmija
odziv na zvučni prepadni podražaj
Language english
URN:NBN urn:nbn:hr:168:767064
Study programme Title: Computer Science Study programme type: university Study level: postgraduate Academic / professional title: Doktor znanosti (Doktor znanosti)
Catalog URL http://lib.fer.hr/cgi-bin/koha/opac-detail.pl?biblionumber=52606
Type of resource Text
Extent ix, 114 str.
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2022-03-15 09:40:13