Title Optimiranje polimernih milireaktora izrađenih aditivnom proizvodnjom
Title (english) Optimization of polymeric millireactors produced by additive manufacturing
Author Marija Lukić
Mentor Domagoj Vrsaljko (mentor)
Committee member Igor Dejanović (predsjednik povjerenstva)
Committee member Vanja Kosar (član povjerenstva)
Committee member Ivana Grčić (član povjerenstva)
Granter University of Zagreb Faculty of Chemical Engineering and Technology Zagreb
Defense date and country 2021-11-11, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Chemical Engineering Analysis, Synthesis and Management of Chemical Processes
Universal decimal classification (UDC ) 66 - Chemical technology. Chemical and related industries 678 - Industries based on macromolecular materials. Rubber industry. Plastics industry 62 - Engineering. Technology in general
Abstract Ovim istraživanjem razrađen je novi pristup izrade jednostavnih cijevnih polimernih milireaktora i polimernih milireaktora sa statičkim miješalicama pomoću tehnologija aditivne proizvodnje u svrhu olakšavanja istraživanja intenzifikacije procesa. Izrađeni su reaktori različitih dimenzija kanala, a u uspješno izrađene milireaktore dodane su pregrade, odnosno statičke miješalice. Princip proizvodnje dodavanjem materijala u slojevima omogućuje oblikovanje složenih geometrijskih struktura unutar kanala. Statičke miješalice stvaraju veće međufazne površine između reaktanata pa je ispitana i primjenjivost milireaktora na reakcije u višefaznim, nemješljivim sustavima. Za modelnu reakciju odabrana je transesterifikacija suncokretova ulja u metilne estere masnih kiselina (FAME). Konverzija, a time i uspješnost prijenosa tvari i energije praćena je infracrvenom spektroskopijom (FTIR), plinskom kromatografijom (GC) i nuklearnom magnetskom rezonancijom (1H NMR). Dobiveni rezultati prestavljaju doprinos upotrebi milireaktora i milireaktora sa statičkim miješalicama kao i reaktorima s oscilirajućim tokom fluida kao zamjenu za već dobro poznate mikroreaktore u kojima je proizvodni volumen manji, a pad tlaka veći nego u milireaktorima. Analizirane su vrste strujanja te su ispitani prijenos tvari i bezdimenzijske značajke u svim uspješno konstruiranim reaktorskim sustavima. Rezultati ukazuju na činjenice da dulja vremena zadržavanja u milireaktorima daju veće konverzije, kao i više temperature i uži kanali. Kod reaktora s oscilirajućim tokom fluida zbog drugačijeg mehanizma miješanja dolazi do još veće intenzifikacije s obzirom na milireaktore s pregradama. U posljednjem dijelu istraživanja posvećena je pažnja fizikalno-kemijskim svojstvima materijala korištenih za 3D-ispis kako bi se primjena takvih reaktorskih sustava mogla ostvariti i u drugim kemijskim sintezama. U tu svrhu, komercijalno dostupnim polimernim materijalima ispitana su toplinska svojstva, slobodna površinska energija i otpornost na bubrenje u raznim kapljevinama s kojima bi proizvedeni milireaktori mogli doći u kontakt.
Abstract (english) This research will elaborate a new approach to the production of simple tubular polymeric millireactors and polymer millireactors with static mixers using additive production technologies in order to facilitate the study of process intensification. Millireactors of different channel dimensions have been manufactured, and static mixers added to the successfully manufactured millireactors. The manufacturing principle – addition of material in layers – allows the formation of complex geometric structures within the channel. Static mixers create larger interphase surfaces between reactants, so the applicability of millireactors to multiphase, immiscible systems will also be tested. For the model reaction, transesterification of sunflower oil into FAME is selected. Fast conversion of FAME which is causative consequence of the efficient mass and energy transfer will be monitored by nuclear magnetic resonance (1H NMR), gas chromatography (GC), and infrared spectroscopy (FTIR).
The obtained results represent a contribution to the use of milireactors and milireactors with static mixers, as well as reactors with oscillating fluid flow, as a replacement for well-known microreactors in which the production volume is smaller and the pressure drop is larger than in milireactors. Flow patterns, mass transfer and dimensionless numbers were analyzied in all successfully constructed reactor systems. The results point to the fact that longer retention times in millireactors give higher conversions, as well as higher temperatures and narrower channels have been. Due to the different mixing mechanism greater process intensification is acheived in a tube baffled reactor in comparison with milireactors with baffles. In the last part of the research, attention was paid to the physical and chemical properties of the materials used for 3D printing to determine whether such reactor systems could be applied in other chemical syntheses as well. For this purpose thermal properties of commercially available polymeric materials were examined, as well as their free surface energy and swelling resistance in various liquids which the produced millireactors could come into contact with.
Keywords
aditivna proizvodnja
milireaktor
statičke miješalice
FAME
Keywords (english)
additive manufacturing
millireactor
static mixers
FAME
Language croatian
URN:NBN urn:nbn:hr:149:036115
Promotion 2021
Project Number: UIP-2014-09-3154 Title: Razvoj materijala za 3D tiskanje mikroreaktora Title: Development of materials for 3D printing of microreactors Acronym: 3Dmicroreactors Leader: Domagoj Vrsaljko Jurisdiction: Croatia Funder: HRZZ Funding stream: UIP
Study programme Title: Chemical Engineering and Applied Chemistry - Doctoral course Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, područje tehničkih znanosti, polje kemijsko inženjerstvo (doktor/doktorica znanosti, područje tehničkih znanosti, polje kemijsko inženjerstvo)
Type of resource Text
Extent 179 str. ; 30 cm
File origin Born digital
Access conditions Open access
Terms of use
Created on 2023-06-01 11:15:57