Abstract | Polimerni nanokompoziti su novi pripadnici skupine kompozitnih materijala koji zbog svojih specifičnosti i još uvijek neistraženih mogućnosti privlače pozornost kako industrije, tako i znanosti. Nanopunila koja pokazuju najbolje karakteristike u kombinaciji s polimernim matricama su ugljikove nanocjevčice zbog iznimnih mehaničkih i električnih svojstava. U ovom završnom radu istraživan je utjecaj dodatka ugljikovih nanocjevčica na vodljivost polimera. Iz pregleda rezultata dosadašnjih istraživanja utvrđeno je da vodljivost u polimernim nanokompozitima s ugljikovim nanocjevčicama ovisi o brojnim čimbenicima, a najznačajniji od njih su udio, omjer dimenzija i modifikacija ugljikovih nanocjevčica, karakteristike matrice te dispergiranost i usmjerenost ugljikovih nanocjevčica u polimernoj matrici. Rezultati pregledanih istraživanja pokazuju da se vodljivost nanokompozita značajno povećava već pri vrlo niskim koncentracijama ugljikovih nanocjevčica, a s obzirom na način priprave, odnosno dispergiranosti ugljikovih nanocjevčica, može se zaključiti da se veća vodljivost postiže kod aglomeriranih uzoraka. U nekim sustavima modifikacija uzrokuje promjenu strukture nanocjevčica zbog koje dolazi do smanjenja vodljivosti nanocjevčica što nadvladava poboljšanu dispergiranost te neki sustavi s modificiranim nanocjevčicama imaju nižu vodljivost, dok u nekim sustavima modifikacija doprinosi povećanju vodljivosti boljim međudjelovanjima i raspodijeljenošću punila u matrici. Analizom mezopskog oblika ugljikovih nanocjevčica, odnosno u trodimenzionalnim sustavima omjera (lsp/d)^2, utvrđeno je da za isti udio nanocjevčica vodljivost linearno raste povećanjem omjera dimenzija MWCNT-a. S obzirom na usmjerenost ugljikovih nanocjevčica u polimernim nanokompozitima, utvrđeno je da je porastom izotropnosti (povećanje FWHM) učestaliji kontakt između SWCNT-a i pri kritičnoj vrijednosti FWHM stvara se vodljiva mreža te se ujedno povećava i vodljivost, ali samo do određene FWHM vrijednosti, iznad koje se počinje smanjivati vodljivost. Što se tiče karakteristika matrice, značajnije poboljšanje električnih svojstava postiže se s amorfnim nego kristaličnim matricama. |
Abstract (english) | Polymeric nanocomposites are the new members of composite materials group which, due to their specifics and still insufficiently researched possibilities, draw the attention of industry, as well as science. Nanofillers which show the best characteristics combined with polymer matrices are carbon nanotubes due to their exceptional mechanical and electrical properties. This Bachelor thesis is about the research of the influence of the addition of carbon nanotubes to the conductivity of polymers. By examining results of previous researches, it was determined that conductivity in polymeric nanocomposites with carbon nanotubes depends on a number of factors, the most significant of them being: content, dimension ratio and modification of carbon nanotubes, matrix characteristics and the dispersion and alignment of carbon nanotubes in a polymer matrix. The results from the researches show that the conductivity of polymeric nanocomposites increases significantly even at low concentrations of carbon nanotubes, and given the way of preparation, or dispersion of carbon nanotubes, it can be concluded that the higher conductivity is achieved with agglomerated samples. In some systems, modification causes a change of structure of the nanotubes that leads to decrease in conductivity of the nanotubes, which overcomes the improved dispersion, so some systems with modified nanotubes have lower conductivity, while in some systems, the modification contributes to the increase in conductivity through better interaction and distribution of fillers in the matrix. By analysing the mesopic shape of carbon nanotubes, that is, in three-dimensional systems with a ratio (lsp/d)^2, it was determined that for the same content of nanotubes, the conductivity increases linearly with the increase of the dimension ratio of MWCNTs. Considering the alignment of carbon nanotubes in polymeric nanocomposites, it was established that the contact between SWCNTs is more frequent with the increase of isotropy (increase of FWHM) and that, at critical value of FWHM, a conductive network is created and conductivity is increased as well, but only to a certain value of FWHM, above which the conductivity decreases. As far as matrix characteristics are concerned, a more significant improvement of electrical properties is achieved with amorphous than with crystal matrices. |