Title Modeli za predikciju ishoda političkih izbora korištenjem društvene mreže Facebook i algoritama strojnog učenja
Title (english) Models for Predicting the Outcome of Political Elections by Means of Social Network Facebook and Machine Learning Algorithms
Author Alen Kišić
Mentor Božidar Kliček (mentor) MBZ: 95426
Committee member Markus Schatten (predsjednik povjerenstva) MBZ: 291806
Committee member Jasminka Dobša (član povjerenstva) MBZ: 218640
Committee member Goran Klepac (član povjerenstva) MBZ: 282674
Granter University of Zagreb Faculty of Organization and Informatics Varaždin
Defense date and country 2023-06-12, Croatia
Scientific / art field, discipline and subdiscipline SOCIAL SCIENCES Information and Communication Sciences
Universal decimal classification (UDC ) 004 - Computer science and technology. Computing. Data processing
Abstract Odlučivanje temeljeno na podacima nova je paradigma za rješavanje brojnih problema u širokom spektru domena. Politika i predviđanje ishoda političkih izbora nije iznimka te raste interes znanstvene i stručne zajednice za primjenom i iskorištavanjem prednosti podatkovne analitike i algoritama strojnog učenja. Ovaj rad nastoji dati nekoliko znanstvenih i stručnih doprinosa u toj domeni. Tradicionalno, najčešća i najtočnija metoda mjerenja javnog mnijenja bile su uzorkovane ankete kojima se postavljaju pažljivo izrađena pitanja precizno definiranim uzorcima populacije. No, takav pristup ima i visoku cijenu: velika ulaganja vremena, truda i novaca za istraživače koji dizajniraju istraživanje, anketari koji prikupljaju podatke i ispitanici koji dobrovoljno daju odgovore. Problem anketa je iskrenost ispitanika, kao i sam uzorak. Nadalje, niz prognoza ishoda izbora u zadnje vrijeme se razlikovalo od konačnih rezultata, što je znatno poljuljalo povjerenje u takve vrste prognoza. Nedavno se pojavila alternativa takvom pristupu s potencijalom za dopunu ili čak potpunu zamjenu dosad korištenih metoda istraživanja koja bi smanjila troškove za istraživače i uklonila napore za ispitanike. Naime, istraživači su počeli koristiti podatke društvenih mreža. U domeni političkih kampanja, taj je potencijal izrazito velik s obzirom na činjenicu da praktično svi politički kandidati i političke stranke u kampanjama koriste društvene mreže. Ovdje provedeno istraživanje primjenjuje algoritme strojnog učenja na podacima aktivnosti korisnika društvene mreže Facebook za razvoj prediktivnih modela ishoda izbora. Glavni je cilj istraživanja usporediti njihovu točnost i pouzdanost s modelima dobivenim tradicionalnim ispitivanjima javnog mnijenja. Istraživanje se provodi na francuskim lokalnim izborima. Za izradu prediktivnih modela koristit će se četiri različita pristupa strojnom učenju: pristup temeljen na pogrešci (algoritam umjetne neuronske mreže), pristup temeljen na informaciji (algoritam stabla odlučivanja), pristup temeljen na sličnosti (algoritam k-najbližih susjeda) i pristup temeljen na vjerojatnosti (naivni Bayesov klasifikator). U evaluaciji i usporedbi modela će se utvrditi koji je pristup strojnog učenja najefikasniji za predviđanje ishoda izbora temeljem podataka društvene mreže Facebook. Dobivanje jednako učinkovitih prediktivnih modela uz brži i jednostavniji pristup podacima daje značajan znanstveni i stručni doprinos istraživanjima u ovom području.
Abstract (english) Data-driven decision-making is a new paradigm for solving various problems in a broad spectrum of domains. Politics and predicting the outcome of political elections is no exception, and interest is growing for both, scientific and professional communities in applying and exploiting the advantages of data analytics and machine learning algorithms. This paper strives to make several scientific and professional contributions in the domains. Traditionally, the most common approach to measure public opinion are sampling surveys that ask carefully defined questions to precisely selected samples of the population. However, such an approach has a high price: large investments of time, effort and money for researchers who design the survey, who collect the data, and the respondents who answers. The problem with surveys is the honesty of the respondents, as well as the sample. Furthermore, a number of elections outcomes forecasts recently differed from the final results, which shaken confidence in these kinds of forecasting. An alternative to such an approach has recently emerged with the potential to complement it or even to completely replace previously used research methods that would reduce costs for researchers and removed the effort for respondents by using social media data. In the domain of political campaigns, this potential is extremely large considering the fact that practically all political candidates and political parties use social networks in their campaigns. The research conducted here applies machine learning algorithms on data from social network Facebook user’s activity to develop predictive models of election outcomes. Main goal of the research is to compare their accuracy and reliability with models obtained by traditional public opinion polls. The research is conducted on French local elections. Four different approaches to machine learning are used to develop predictive models: an approach based on errors (artificial neural network algorithm), information-based approach (decision tree algorithm), a similarity-based approach (k-nearest neighbours) and an approach based on probabilities (Naive Bayes classifier). The evaluation and comparison of the models will determine the best machine learning algorithm for predicting election outcomes based on social data network Facebook. Obtaining equally effective predictive models while being faster and simpler access to data provides a significant scientific and professional contribution to research in this area.
Keywords
algoritmi strojnog učenja
društvena mreža Facebook
politički izbori
umjetne neuronske mreže
prediktivni modeli
predizborne ankete
Keywords (english)
Social network Facebook
Machine Learning Algorithms
Political Elections
Language croatian
URN:NBN urn:nbn:hr:211:015533
Promotion 2023
Study programme Title: Postgraduate doctoral study in Information Science Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, područje društvenih znanosti, polje informacijske i komunikacijske znanosti (doktor/doktorica znanosti, područje društvenih znanosti, polje informacijske i komunikacijske znanosti)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2023-07-10 11:40:25