Title Pregled stanja kvantne komunikacijske mreže u državama EU
Title (english) An overview of the state of the quantum communication network in EU
Author Goran Mihovljanec
Mentor Dragan Peraković (mentor)
Committee member Marko Periša (predsjednik povjerenstva)
Committee member Ivan Cvitić (član povjerenstva)
Committee member Ivan Grgurević (član povjerenstva)
Granter University of Zagreb Faculty of Transport and Traffic Sciences (Division of Transport) (Department of Information and Communications Traffic) Zagreb
Defense date and country 2022-09-22, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Traffic and Transport Technology Postal and Telecommunications Traffic
Abstract Sve većom digitalizacijom u svakodnevnom životu, raste i rizik od „curenja“ informacija do neovlaštenih korisnika. Razvijaju se različiti protokoli i principi kako bi te informacije, podatke zaštili u samom prijenosu od izvorišta do odredišta. Jedna od tih tehnologija je i kvantna komunikacija koja leži na temeljima kvantne fizike, odnosno mehanike i predviđa joj se blistava budućnost baš zbog činjenice da je nemoguće od strane neovlaštenog korisnika presresti informaciju u samom prijenosu. Kvantna komunikacija je polje primijenjene kvantne fizike koje je usko povezano s kvantnom teleportacijom i kvantnom obradom informacija. Najzanimljivija primjena je zaštita informacijskih kanala od prisluškivanja neovlaštenog korisnika, a to se ostvaruje primjenom kvantne kriptografije. Najrazvijenija i najpoznatija primjena kvantne kriptografije je kvantna distribucija ključeva (QKD). Za obavljanje kriptografskih zadataka ili za razbijanje kriptografskih sustava QKD opisuje korištenje kvantno mehaničkih učinaka. Načelo rada QKD sustava prilično je jednostavno: dvije strane, odnosno pošiljatelj (Alice) i primatelj (Bob) koriste pojedinačne fotone koji su nasumično polarizirani u stanja koja predstavljaju bitove 0 i 1 za prijenos niza slučajnih brojeva koji se zatim koriste kao ključevi u kriptografskoj komunikaciji. Obje strane su međusobno povezane i klasičnim i kvantnim kanalom. Alice generira nasumični tok kubita koji se šalju preko kvantnog kanala. Kada se međusobno povežu kvantnim kanalom Bob i Alice — koristeći klasični kanal — izvode klasične operacije kako bi provjerili je li prisluškivač pokušao izvući informacije o prijenosu kubita. Prisutnost prisluškivača otkriva se nesavršenom međusobnom povezanošću između dvije liste bitova dobivenih nakon prijenosa kubita između pošiljatelja i primatelja. Jedna važna komponenta praktički svih ispravnih shema šifriranja je prava slučajnost koja se može bez ikakvih problema generirati pomoću kvantne optike. Područja primjene kvantne komunikacije nalaze se u bankarstvu, vladi, industriji, vojsci i sl.
Abstract (english) With increasing digitization in everyday life, the risk of information "leaking" to an unauthorized user also increases. Various protocols and principles are being developed in order to protect this information and data during the actual transfer from source to destination. One of these technologies is quantum communication, which is based on the foundations of quantum physics, that is, mechanics, and is predicted to have a bright future precisely because of the fact that it is impossible for an unauthorized user to intercept the information in the transmission itself. Quantum communication is a field of applied quantum physics closely related to quantum teleportation and quantum information processing. The most interesting application is the protection of information channels from eavesdropping by an unauthorized user, and this is achieved by applying quantum cryptography. The most developed and well-known application of quantum cryptography is quantum key distribution (QKD). To perform cryptographic tasks or to break cryptographic systems, QKD describes the use of quantum mechanical effects. The working principle of the QKD system is quite simple: two parties, the sender (Alice) and the receiver (Bob) use individual photons that are randomly polarized in a state representing bits 0 and 1 to transmit a series of random numbers that are then used as keys in cryptographic communication. . Both parties are connected to each other by both classical and quantum channels. Alice generates a random stream of qubits that are sent over the quantum channel. When Bob and Alice communicate with each other over the quantum channel — using the classical channel — classical operations are performed to check whether the listener has tried to extract information about the qubit transfer. The presence of an eavesdropper is detected by the imperfect correlation between the two lists of bits obtained after the transmission of the qubit between the sender and the receiver. One important component of practical all-correct encryption schemes is true randomness, which can be easily generated using quantum optics. Applications of quantum communications are in banking, government, industry, military, etc.
Keywords
foton
kvantna komunikacija
kvantna isprepletenost
kvantni protokol
QKD
EPR parovi
kvantna kriptografija
kvantna isprepletenost
Keywords (english)
photon
quantum communication
quantum entanglement
quantum protocol
QKD
EPR pairs
quantum cryptography
quantum teleportation
Language croatian
URN:NBN urn:nbn:hr:119:868199
Study programme Title: Traffic and Transport; specializations in: Road Traffic and Transport, Railway Traffic and Transport, Water Traffic and Transport, Air Traffic and Transport, Postal Traffic, Information and Communication Traffic, Urban Traffic and Transport Course: Road Traffic and Transport Study programme type: university Study level: graduate Academic / professional title: magistar/magistra inženjer/inženjerka prometa (magistar/magistra inženjer/inženjerka prometa)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2022-12-09 16:43:49