Abstract | Danas se uz sve veći broj instaliranih elektrana na obnovljive izvore energije (OIE) javlja problem njihove intermitentnosti. Također, svakodnevno smo svjedoci klimatskim promjenama koje uzrokuju mnoštvo elementarnih nepogoda. Rezultat toga je sve češći pad elektroenergetske mreže koji se danas osigurava uglavnom starim, bučnim i zagađujućim dizel agregatima.
Slijedom toga cilj ovog diplomskog rada bio je projektirati energetski „back-up“ sustav temeljen na zelenom vodiku kojim se osigurava konstantno opterećenje sustava od 2 kW 48 sati nakon ispada iz glavne mreže. Taj sustav se sastoji od fotonaponskih modula, PEM elektrolizatora, elektrokemijskog kompresora, PEM svežnja gorivnih članaka te spremnika vodika. Nakon što je detaljno opisan svaki od dijelova sustava, dani su matematički modeli za svaki dio sustava. Pomoću matematičkih modela napravljene su simulacije za svaki dio sustava u MATLAB/Simulink Software-u. Isto je napravljeno za cijeli sustav zajedno gdje su uz referetnu simulaciju napravljene dvije dodatne regulacije samog sustava te tri moguća scenarija.
Uvidom u dobivene rezultate simulacije odabrane su tržišno raspoložive komponente energetske jezgre sustava. Za navedene komponente sustava napravljen je koncept eksperimentalne staze te smještaj istih u Laboratoriju za energetska postrojenja Fakulteta strojarstva i brodogradnje (FSB) u Zagrebu gdje se očekuje eksperimentalna validacija samih simulacija. |
Abstract (english) | Nowadays, due to the growing number of installed power plants based on renewable energy sources (RES), there is a problem with their intermittency. Climate change is increasing the frequency and severity of natural disasters globally. The result is an increasingly frequent breakdown of the electricity network, which today is secured mainly by old, noisy, and polluting diesel generators.
Consequently, this thesis aimed to design an energy "back-up" system based on green hydrogen which ensures a constant system load of 2 kW 48 hours after the breakdown of the electricity network. This system consists of photovoltaic (PV) modules, a PEM electrolyzer, an electrochemical compressor, a PEM fuel cell stack, and a hydrogen tank. After each of the parts of the system is described in detail, mathematical models for each part of the system are given. Using mathematical models, simulations were made for each part of the system in MATLAB/Simulink Software. The same was done for the entire system where, in addition to the reference simulation, two additional regulations of the system and three possible scenarios were made.
Insight into the obtained simulation results, the commercially available components of the energy core of the system were selected. For these components of the system, an experimental path was envisaged and their placement in the Power Engineering Laboratory of the Faculty of Mechanical engineering and Naval Architecture (FSB) in Zagreb, where experimental validation of the simulations is expected. |