Title Analiza vodnog režima i mutnoća izvora Rakonek
Title (english) Analysis of Water Regime and Turbidity of Rakonek Spring
Author Tena Šarić
Mentor Nevenka Ožanić (mentor)
Mentor Josip Rubinić (komentor)
Committee member Igor Ružić (predsjednik povjerenstva)
Committee member Josip Rubinić (član povjerenstva)
Committee member Nevenka Ožanić (član povjerenstva)
Granter University of Rijeka Faculty of Civil Engineering Rijeka
Defense date and country 2016-07-14, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Civil Engineering Hydrotechnology
Abstract Ovaj rad sadrži opis postrojenja i razvoja krškog izvora Rakonek kao izuzetno
važnog resursa za potrebe vodoopskrbe južne Istre kojega koristi Vodovod Pula. S
obzirom na vezu izvora sa slivom rijeke ponornice Pazinčice u središnjoj Istri
iznesene su i osnovne značajke cjelokupnog područja te njihove međusobne
povezanosti. Uz sistematizaciju i objedinjavanje raspoloživih registriranih
podataka izvršena je hidrološka analiza vodnog režima i analiza pojava zamućenja
izvorišnih voda s ciljem uočavanja korisnih informacija te dobivanja podataka i
podloga za ocjenu i prognoziranje kritičnih stanja. Pri analizi hidroloških podataka
obuhvaćeno je dvadeset petogodišnje razdoblje iz kojega su izvučeni osnovni
statistički parametri, karakteristične vrijednosti i situacije te analize učestalosti,
trajnosti i vjerojatnosti pojave. Tako je dan pregled oborinskog režima, vodostaja
te crpljenih, preljevnih i ukupnih protoka na izvoru. Metodološki prikaz i rezultati
analiza vodnog režima i mutnoća, osim što se temelje na osnovnoj statističkoj
obradi podataka, zbog složenosti međuodnosa hidroloških pojava uključuju i
metode dubinske analize podataka primjenom umjetne inteligencije. Razjašnjeni
su osnovni koraci pri korištenju Weka sustava za strojno učenje primjenjujući ga
istovremeno u svrhu identifikacije pojava mutnoća na izvoru. Rangiranjem atributa
utvrđeni su najznačajniji i njihov utjecaj na mutnoću, a s obzirom da su se na taj
način eliminirali atributi beznačajnog utjecaja rangiranje je ujedno doprinijelo
kvaliteti modela. Pritom su korištena dva klasifikatora: regresijska stabla
odlučivanja i višeslojne neuronske mreže te se promatrala njihova prilagodba
registriranim vrijednostima. Modeliranje je provedeno kroz dvije faze: treniranjem
na nizu podataka za učenje i verifikacijom modela na nezavisnom nizu podataka.
Verifikacija je provedena na način da model trenira na većem dijelu niza
nezavisnih podataka, a zatim rezultate prilagodbe testira na preostalim podacima.
Time su dobiveni analitički pokazatelji i grafički prikazi za interpretaciju. S
obzirom da je odabrani model dobiven klasifikatorom regresijskog stabla
odlučivanja sustav omogućava i njegovu grafičku vizualizaciju. Rezultati
prognoziranja povećanih mutnoća iskazani su u postocima niza podataka za
testiranje, a prilagodba na istim prikazana je linijskim grafikonima.
Abstract (english) This paper describes a plant complex and development of the karst spring
Rakonek as an important resource for water delivery of south Istria which is used
by Vodovod Pula. Considering the connection of the spring with the basin of
undercurrents of river Pazinčica in central Istria, general features of the entire
area have been laid out and their interconnection. Along with systematization and
consolidation of available registered data, a hydrological analysis of the water
regime has been done and after that an analysis of the turbidity of the spring
waters with the useful insight in mind and getting the necessary data for
evaluation and prognosis of critical states. In the analysis of the data a twenty-fiveyear
span has been taken into account from which basic statistical parameters,
characteristically values and situations have been drawn along with analysis of
frequency, durability and probability. In such a manner a summary of rainfall
regime and water level along with amount of drawn, overflow and total water flow
on the spring. Methodological representation and results of the analysis of the
water regime and turbidity, besides being founded on basic statistical analysis,
include methods of deep data analysis with the application of artificial intelligence.
Basic steps needed for understanding the Weka system for machine learning have
also been laid out with the immediate application in order to identify the
appearance of turbidity on the spring. The attributes have been ranked on
importance order and their influence on the turbidity, and considering the
ordering of the attributes we could immediately remove those attributes that have
no or little significance which contributed to the model accuracy and overall
quality. Two classificators have been used: regression decision tree and multilayered
neuron nets. We have observed their adaptability to the registered values.
Modeling has been carried out in two phases: training on the learning data and
verification of the model on an independent data sequence. Verification was
carried out in such a way that model trained on a larger part of independent data
and then tested the results on the rest. Analytical indicators and graphical models
needed for interpretation were obtained in such a way. Considering that the
chosen model has been obtained with the regression decision tree classificator the
system allows for its graphical visualization. The results of the prognosis of the
increased turbidity are displayed in percentage of the test data sequences, and the
adaptability of the aforementioned is displayed with line graphs.
Keywords
Rakonek
Pazinčica
krški izvor
hidrološka analiza
vodni režim
mutnoća vode
modeliranje
umjetna inteligencija
Keywords (english)
Rakonek
Pazinčica
karst spring
hydrological analysis
water regime
water turbidity
modeling
artificial intelligence
Language croatian
URN:NBN urn:nbn:hr:157:470696
Study programme Title: Civil Engineering; specializations in: Geotechnical Engineering, Hydraulic Engineering, Engineering Modelling, Structural Engineering, Transportation Engineering, Urban Engineering Course: Hydraulic Engineering Study programme type: university Study level: graduate Academic / professional title: magistar/magistra inženjer/inženjerka građevinarstva (magistar/magistra inženjer/inženjerka građevinarstva)
Type of resource Text
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2016-09-27 12:58:26