Scientific paper - Original scientific paper
Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks
Separation Science and Technology, 40 (2005), 6; 1333-1352. https://doi.org/10.1081/SS-200052816


Institutional repository: Repository UHC Osijek

Cite this document

Bolanča, T., Cerjan Stefanović, Š., Srečnik, G., Debeljak, Ž. & Novič, M. (2005). Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks. Separation Science and Technology, 40. (6), 1333-1352. doi: 10.1081/SS-200052816

Bolanča, Tomislav, et al. "Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks." Separation Science and Technology, vol. 40, no. 6, 2005, pp. 1333-1352. https://doi.org/10.1081/SS-200052816

Bolanča, Tomislav, Štefica Cerjan Stefanović, Goran Srečnik, Željko Debeljak and Milko Novič. "Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks." Separation Science and Technology 40, no. 6 (2005): 1333-1352. https://doi.org/10.1081/SS-200052816

Bolanča, T., et al. (2005) 'Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks', Separation Science and Technology, 40(6), pp. 1333-1352. doi: 10.1081/SS-200052816

Bolanča T, Cerjan Stefanović Š, Srečnik G, Debeljak Ž, Novič M. Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks. Separation Science and Technology [Internet]. 2005 [cited 2024 June 22];40(6):1333-1352. doi: 10.1081/SS-200052816

T. Bolanča, Š. Cerjan Stefanović, G. Srečnik, Ž. Debeljak and M. Novič, "Comparison of Retention Modeling in ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks", Separation Science and Technology, vol. 40, no. 6, pp. 1333-1352, 2005. [Online]. Available at: https://urn.nsk.hr/urn:nbn:hr:239:911779. [Accessed: 22 June 2024]