Abstract | Matične stanice su nediferencirane i nespecijalizirane stanice sposobne samoobnavljati se diobom i diferencirati u različite tipove stanica. Izvori matičnih stanica su embrionalne stanice iz zigote, koštana srž, periferna krv i drugi, a hipotetski i tumori u kojima su tumorske matične stanice uzrokuju njihove metastaze i relapse. Matične stanice dijele se na embrionalne, adultne, mezenhimalne, inducirane pluripotentne matične stanice te posebna vrsta, progenitorne stanice. Međusobno se razlikuju prema diferencijacijskoj sposobnosti pa tako postoje totipotentne, pluripotentne, multipotentne, oligopotentne i unipotentne matične stanice. Stanična diferencijacija jest proces pri kojemu se stanica mijenja iz manje specijaliziranog tipa postaje više specijalizirani s određenim funkcijama, čime se stanicama ograničava diferencijacijski potencijal. Nuklearno reprogramiranje je reverzija diferencijacijskog stanja zrele stanice u stanje karakteristično za embrionalne nediferencirane stanice, čime nastaju inducirane pluripotentne matične stanice. Yamanaka ih je prvi 2006.godine uspio stvoriti transdukcijom nekoliko transkripcijskih čimbenika (Oct3/4, Sox2, c-Myc i Klf) virusnim vektorom, a u upotrebi su i druge metode bez manipulacije genomom poput transfekcija plazmidom i direktna dostava proteina. Utvrđivanjem bioloških staničnih osobina, pluripotentnosti i oznaka epigenetskog reprogramiranja dokazuje se uspješnost reprogramiranja. S upotrebom embrionalnih matičnih stanica povezana su mnoga etička pitanja i problem imunološkog odbacivanja, za razliku od induciranih gdje se koriste vlastite pacijentove stanice, no njihove mane su nedostatna učinkovitost u proizvodnji, postojanje „memorije“ o somatskom porijeklu, manipulacija genomom i izazivanje malignih bolesti. U bazičnim znanostima primjenjuju se pri istraživanju patogeneze različitih bolesti, ali i mehanizama djelovanja i određivanju nuspojava novih lijekova. Važne su za proučavanje normalnog rasta i razvoja te za identificiranje uzroka prirođenih anomalija, a njihova budućnost je primjena za regeneraciju i potpunu zamjenu oštećenih tkiva i organa. |
Abstract (english) | Stem cells are undifferentiated and unspecialized cells that possess properties of self-renewal through mitosis/division and differentiation into many cell types. The sources of stem cells are embryonic stem cells from zygote, bone marrow, peripheral blood and others, but also hypothetically tumors in which cancer stem cells cause metastasis and tumor relapse. Stem cells are divided into embryonic, adult, mesenchymal, induced pluripotent stem cells and a special type of cells – progenitor cells. Depending on their differentiation potential, there are totipotent, pluripotent, multipotent, oligopotent and unipotent stem cells. Cell differentiation is a process in which cell changes from a less specialized type into a more specialized type with certain functions, thus limiting cell differentiation potential. Nuclear reprogramming is the reversal of the differentiation state of a mature cell into one that is characteristic of the undifferentiated embryonic cells, thus creating induced pluripotent stem cells. Yamanaka was the first one to create them in 2006 by transduction of several transcription factors (Oct3 / 4, Sox2, c-Myc and KLF) by viral vector, but there are other methods that do not include manipulation of the genome, such as plasmid transfection and direct delivery of the protein. The success of the reprogramming is based on determining the biological properties of the cell, pluripotency and the reprogramming of epigenetic marks. The use of embryonic stem cells is linked with many ethical issues and the problem of immune rejection, as opposed to induced cells, where the patient's own cells are used, but their disadvantages are the lack of efficiency in production, existing "memory" of somatic origin, and manipulation of the genome causing malignancies. In the basic sciences they are applied in the study of the pathogenesis of various diseases, but also in determining the mechanisms of action and the side effects of new drugs. They are important for the study of normal growth and development and for identifying the causes of congenital anomalies, and their future is their application in the regeneration and complete replacement of damaged tissues and organs. |