Title Primjena CAD-a u dijagnostici karcinoma dojke
Title (english) Application of CAD in the diagnosis of breast cancer
Author Lucija Bratinčević
Mentor Tatjana Matijaš (mentor)
Committee member Frane Mihanović (predsjednik povjerenstva)
Committee member Diana Aranza (član povjerenstva)
Committee member Tatjana Matijaš (član povjerenstva)
Granter University of Split (University Department of Health Studies) (Chair of Radiologic Technology) Split
Defense date and country 2021-07-08, Croatia
Scientific / art field, discipline and subdiscipline BIOMEDICINE AND HEALTHCARE Clinical Medical Sciences
Abstract Karcinom dojke iznimno je opasna bolest, koja ako se dijagnosticira na vrijeme ima visoku stopu preživljenja. Incidencija i stopa smrtnosti od karcinoma dojke sve više su u porastu, stoga se u svrhu smanjenja ovih brojki traže nova tehnološka rješenja koja će omogućiti što raniju detekciju karcinoma dojke. Iako se prvobitno rješenje vidjelo u tradicionalnim računalno potpomognutim sustavima detekcije (CAD) koji su se primjenjivali na različitim radiološkim metodama snimanja dojke, rezultatima različitih studija koji su obrađeni u ovom radu, utvrđeno je da nisu ispunili svoja prvobitna očekivanja u dijagnostici karcinoma dojke. Uporaba konvencionalnih CAD sustava još uvijek je imala prevelika ograničenja poput smanjenja specifičnosti i pozitivne prediktivne vrijednosti uz povećanje lažno pozitivnih nalaza te povećanja stope opoziva. Međutim, razvojem algoritama temeljenih na umjetnoj inteligenciji (AI) poboljšana je kvaliteta i točnost konvencionalnih CAD sustava. Za razliku od konvencionalnih CAD sustava koji se temelje na ručno izrađenim značajkama, dubinsko učenje, kao potpolje AI-a temelji se na reprezentacijskom učenju. U reprezentacijskom učenju sam algoritam tijekom treninga utvrđuje značajke na slici koje ukazuju na prisutnost lezija. U posljednje vrijeme takvi se algoritmi dubokog učenja primjenjuju na digitalnu mamografiju (FFDM), digitalnu tomosintezu dojke (DBT) i magnetnu rezonanciju (MRI). U ovom radu analizom raznih studija raspravljaju se mogućnosti, ali i ograničenja novih aplikacija temeljenih na AI za različite modalitete snimanja dojki. Zbog malog broja studija provedenih na temu AI sustava te potrebe za izrazito velikim skupom podataka za obuku i provjere valjanosti algoritma mnogi znanstvenici i dalje sumnjanju u ovu novu metodu. Unatoč, navedenim ograničenjima AI pristup ima mogućnosti otkriti korisne značajke na slici koje su još uvijek neprimjetne ljudskom oku. Budućim napredcima tehnologije značajno će se unaprijediti AI sustavi i njihova implementacija u zdravstvenim sustavima bit će neizbježna.
Abstract (english) Breast cancer is known to be an extremely dangerous disease, which if diagnosed on time has a very high survival rate. The incidence and mortality rate from breast cancer are increasing, so in order to reduce these numbers, new technological solutions are being sought that will enable the earliest possible detection of breast cancer. Although the original solution was seen in traditional computer-adied detection systems (CAD) applied to various radiological methods of breast imaging, the results of the variety of studies discussed in this paper found that they did not meet their original expectations in breast cancer diagnosis. The use of conventional CAD systems still had too many limitations such as a decrease in specificity and positive predictive value with an increase in false positive findings and an increase in the recall rate. However, the development of algorithms based on artificial intelligence (AI) has improved the quality and accuracy of conventional CAD systems. Unlike conventional CAD system that are based on hand-crafted features, depth learning, as a subfield of AI, is based on representational learning. In representational learning, the algorithm itself during training determines the features in the image that indicate the presence of a lesion. Recently, such deep learning algorithms have been applied to digital mammography (FFDM), digital breast tomosynthesis (DBT), and magnetic resonance imaging (MRI). In this paper, the analysis of various studies discusses the possibilities, but also the limitations of new AI-based applications for different breast imaging modalities. Due to the small number of studies conducted on the topic of AI systems and the need for an extremely large set of data for training and validation of the algorithm, many scientists continue to doubt this new method. Despite the emergence of these limitations, the AI approach has the ability to detect useful features in the image that are still invisible to the human eye. Future advances in technology will significantly improve AI systems and their implementation in health systems will be inevitable.
Keywords
AI
CAD
digitalna tomosinteza dojki
karcinom dojke
mamografija
radiomika.
Keywords (english)
AI
breast cancer
CAD
digital breast tomosynthesis
mammography
radiomics.
Language croatian
URN:NBN urn:nbn:hr:176:796339
Study programme Title: Radiologic Technology (university/undergraduate) Study programme type: university Study level: undergraduate Academic / professional title: sveučilišni prvostupnik/prvostupnica (baccalaureus/baccalaurea) radiološke tehnologije (sveučilišni prvostupnik/prvostupnica (baccalaureus/baccalaurea) radiološke tehnologije)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2021-07-12 12:28:05