Title Uloga radiologije u COVID-19 pandemiji
Title (english) The role of radiology in the COVID-19 pandemic
Author Nives Grepo
Mentor Maja Marinović Guić (mentor)
Committee member Tonći Batinić (predsjednik povjerenstva)
Committee member Ljiljana Marčić (član povjerenstva)
Committee member Maja Marinović Guić (član povjerenstva)
Granter University of Split (University Department of Health Studies) Split
Defense date and country 2024-09-20, Croatia
Scientific / art field, discipline and subdiscipline BIOMEDICINE AND HEALTHCARE Clinical Medical Sciences
Abstract Pandemija COVID-19, uzrokovana SARS-CoV-2 virusom, predstavljala je globalni zdravstveni izazov koji je zahtijevao brzu reorganizaciju zdravstvenih sustava i uvođenje strogih zaštitnih mjera. Zlatni standard kod postavljanja dijagnoze COVID infekcije svakako je RT-PCR test, te uz test, radiološke metode koje svojim specifičnim prikazima ukazuju na oboljenja. Radiološki prikaz manifestacija COVID-19 infekcije uključuje radiograme torakalnih organa koji se koriste za evaluaciju plućnih promjena, kompjutoriziranu tomografiju (CT) koja pruža detaljan prikaz abnormalnosti uzrokovanim infekcijom, PET/CT i ultrazvuk pluća (LUS) koji dodatno pomažu u dijagnostici i praćenju, te magnetsku rezonanciju (MR) koja se koristi za detaljnu procjenu komplikacija i post covid sindroma. Komplikacije COVID-19 infekcije s najvećom incidencijom su plućne, neurološke, hematološke, bubrežne i srčane. Tijekom pandemije pokazala se njihova ozbiljnost i nepredvidljivost s obzirom da su ishod bolesti dodatno činile neizvjesnim i otežavale oporavak. Posebnu inspiraciju i motivaciju za nova znanstvena istraživanja daju sindrom post covid-a i multisistemski inflamatorni sindrom u djece s obzirom da imaju karakteristične značajke kliničke slike. Algoritmi umjetne inteligencije pokazali su se kao značajan pomoćni alat u radiološkoj obradi covid pacijenata, pomažući u bržoj i preciznijoj dijagnostici, te olakšavajući procjenu stanja pacijenata i praćenje razvoja bolesti.
Abstract (english) The COVID-19 pandemic, caused by the SARS-CoV-2 virus, posed a global health challenge that required rapid reorganization of healthcare systems and the implementation of strict protective measures. The gold standard for diagnosing COVID infection is certainly the RT-PCR test, along with radiological methods that provide specific visual indications of the disease. The radiological presentation of COVID-19 infection includes thoracic organ radiographs used to evaluate lung changes, computed tomography (CT) which offers a detailed view of abnormalities caused by the infection, PET/CT and lung ultrasound (LUS) which further assist in diagnosis and monitoring, and magnetic resonance imaging (MRI) used for a detailed assessment of complications and post-COVID syndrome. The complications of COVID-19 infection with the highest incidence are pulmonary, neurological, hematological, renal, and cardiac. During the pandemic, their severity and unpredictability became evident, as they further complicated the disease outcome and recovery. Post-COVID syndrome and multisystem inflammatory syndrome in children provide particular inspiration and motivation for new scientific research due to their characteristic clinical features. Artificial intelligence algorithms have proven to be a significant auxiliary tool in the radiological processing of COVID patients, aiding in faster and more accurate diagnosis, and facilitating patient condition assessment and monitoring disease progression.
Keywords
COVID-19
radiologija
infekcija
manifestacije
komplikacije
Keywords (english)
COVID-19
radiology
infection
manifestations
complications
Language croatian
URN:NBN urn:nbn:hr:176:012212
Study programme Title: Graduate University Study Programme of Radiologic Technology Study programme type: university Study level: graduate Academic / professional title: sveučilišni/a magistar/magistra radiološke tehnologije (sveučilišni/a magistar/magistra radiološke tehnologije)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2024-09-21 08:38:27