Abstract | U ovom diplomskom radu ispitana je permeabilnost poloksamerskih i poloksamersko-kitozaniskih micela s uklopljenim melatoninom. Micele su izrađene metodom izravnog otapanja te su im određeni ključni nanotehnološki parametri (veličina, indeks polidisperznosti, zeta-potencijal) koji mogu utjecati na permeabilnost. Određena je i uspješnost uklapanja melatonina i njegov sadržaj u micelama. Veličine čestica u poloksamersko i poloksamersko-kitozanskim micelama s uklopljenim melatoninom su u rasponu od 20,0 do 20,7 nm, a indeks polidisperznosti (PDI) je između 0,176 i 0,213. Zeta potencijal poloksamersko-kitozanskih micela je približno 4,3 mV uslijed asocijacije kationskog polielektrolita kitoza na površinu poloksamerskih micela. Uspješnost uklapanja melatonina je 33,99-38,76%, a sadržaj melatonina u micelama je između 4,69 i 5,35%. Veličina čestica u poloksamersko i poloksamersko-kitozanskim nanosustavima bez uklopljenog melatonina je u rasponu od 23,3 do 24,5 nm, a PDI je u rasponu od 0,315 do 0,340. Srednja vrijednost zeta-potencijala poloksamersko-kitozanskih micela je približno 1,5 mV. Zeta-potencijal poloksamerskih micela bez dodatka kitozana u acetatnom puferu pH 6,0 su približno 0 mV zbog neionske prirode poloksamera P407. U ovom diplomskom radu ispitana je permeabilnost na staničnom modelu epitela rožnice i izračunati su prividni koeficijenti permeabilnosti: melatonina u otopini (Papp(M) = 1,40 ± 0,11 × 10-5 cm s-1), melatonina u poloksamerskim micelama (Papp(MF) = 1,61 ± 0,17 × 10-5 cm s-1) i melatonina u poloksamersko-kitozanskim micelama (Papp(MFK) = 1,02 ± 0,03 × 10-5 cm s-1). Ukapanjem melatonina u poloksamerske micele ne smanjuje se permeabilnost melatonina, dok je smanjenje permeabilnosti melatonina opaženo uklapanjem melatonina u poloksamersko-kitozanske micele. Takvi rezultati upućuju na zaključak da kitozan, uslijed elektrostatske interakcije s poloksamerom P407 umanjuje pozitivni učinak poloksamera P407 na transcelularnu permeabilnost melatonina. |
Abstract (english) | In this diploma thesis permeability of poloxamer and poloxamer-chitosan micelles loaded with melatonin were tested. Nanosystems are prepared using direct dissolution method. The main nanotechnological characteristics (size, size distribution and surface charge) of prepared micelles which can influence permeability were determined. Entrapment efficiency of melatonin and melatonin loading in micelles were determined. An average hydrodynamic diameter of melatonin loaded poloxamer and poloxamer-chitosan micelles is in the range from 20.0 to 20.7 nm; the polydispersity index is from 0.176 to 0.213 and the zeta-potential is around 4.3 mV. Entrapment efficiency of melatonin is 33.99 - 38.76% and melatonin loading in micelles is 4.69 - 5.35%. The particle size in poloxamer and poloxamer-chitosan nanosystems without melatonin is between 23.3-24.5 nm, PDI is between 0.315-0.340. The zeta potential of poloxamer micelles without addition of chitosan in acetate buffer pH 6.0 is around 0 mV, because of nonionic nature of poloxamer. In this thesis permeability was examinated on in vitro cellular model (the corneal epithelial cell line HCE-T). The apparent permeability coefficients (PDI) were calculated and following results were obtained: melatonin in solution (Papp(M) = 1.40 ± 0.11 × 10-5 cm s-1), melatonin in poloxamer micelles (Papp(MF) = 1.61 ± 0.17 × 10-5 cm s-1) and melatonin in poloxamer-chitosan micelles (Papp(MFK) = 1.02 ± 0.03 × 10-5 cm s-1). It is concluded that embedding melatonin in poloxamer micelles does not decrease permeability. Furthermore, embedding melatonin in poloxamer-chitosan micelles decreases permeability. We can conclude that chitosan, due to electrostatic interaction with poloxamer P407, decreases positive effect of poloxamer P407 on transcellular permeability of melatonin. |