Title Identifikacija mikroorganizama iz urina genomskom i proteomskom analizom
Title (english) Identification of urine microorganisms by genomic and proteomic analysis
Author Marina Čeprnja
Mentor Karmela Barišić (mentor)
Mentor Jasenka Škrlin-Šubić (komentor)
Committee member Antonio Starčević (predsjednik povjerenstva)
Committee member Maja Abram (član povjerenstva)
Committee member Mario Cindrić (član povjerenstva)
Granter University of Zagreb Faculty of Pharmacy and Biochemistry (Department of medical biochemistry and haematology) Zagreb
Defense date and country 2022, Croatia
Scientific / art field, discipline and subdiscipline BIOMEDICINE AND HEALTHCARE Pharmacy Medical Biochemistry
Universal decimal classification (UDC ) 615 - Pharmacology. Therapeutics. Toxicology
Abstract U identifikaciji bakterija koji su najčešći uzročnici infekcija mokraćnoga sustava najčešće se koriste klasične
medicinsko-mikrobiološke metode. Glavni nedostatak tih metoda je njihova dugotrajnost. Upravo iz toga razloga
kontinuirano se istražuju mogućnosti bržih i učinkovitijih postupaka za određivanje broja i vrste mikroorganizama.
U ovom doktorskom radu istraživane su mogućnosti upotrebe masene spektrometrije (MS) i sekvenciranja gena za
16S rRNA u svrhu identifikacije bakterija iz mokraće. Za identifikaciju mikroorganizama izoliranih iz mokraće
ispitanika sa simptomima cistitisa, kao kontrola koristila se klasična mikrobiološka dijagnostika nakon koje se na
istim uzorcima provodila analiza mikrobioma i metaproteoma. Analiza mikrobioma obuhvaćala je identifikaciju
gena za 16S rRNA, dok se analizom metaproteoma provedenoga na MALDI-TOF MS/MS (engl. matrix assisted laser
desorption ionization-time of flight tandem mass spectrometry) pokušala postići rezolucija na nivou soja. Cilj ovoga
rada bio je dizajnirati i ispitati metodu MS-a za izravnu, brzu i pouzdanu identifikaciju mikroorganizama u uzorcima
mokraće ispitanika kod kojih je klasičnim mikrobiološkim metodama dokazana prisutnost mikroorganizama >105
CFU/ml te je usporediti s rezultatima dobivenim genomskom analizom mikroorganizama mokraće. Također, cilj
rada bio je pratiti promjene sastava mokraćne mikrobiote izazvane cistitisom i dinamiku njihove promjene uslijed
antibiotske terapije. Istraživanje je obuhvatilo analizu ukupno 396 uzoraka mokraće prikupljenih u KB Dubrava.
Osim toga, analizirano je dodatnih osam uzoraka mokraće istoga ispitanika koji je bio na antimikrobnoj terapiji s
ciljem praćenja promjena u mokraćnoj mikrobioti, te 40 uzoraka kultura četiri najčešća uropatogena. Rezultati
ovoga istraživanja pokazali su da se koristeći masenu spektroskopiju mogu identificirati bakterije u
monomikrobnim kulturama na razini roda. Međutim, ukoliko se radi o polimikrobnim kulturama MS ne daje
pouzdane rezultate identifikacije. Sekvenciranjem gena za 16S rRNA postignuta je taksonomska kategorizacija
uropatogena do razine roda (44 %) i obitelji (56 %), dok identifikacija na razini vrste nije postignuta. Također,
utvrđeno je da antibiotska terapija ima snažan utjecaj na dinamiku promjena sastava mokraćne mikrobiote, te da
je trajanje terapije iznimno važan terapijski parametar, kao i početni izbor lijeka.
Abstract (english) The bacteria that are the most prevalent causes of urinary tract infections are typically identified using standard
microbiological procedures. The biggest downside of these approaches is that they take a long time to complete.
As a result, researchers are always looking for new ways to determine the quantity and kind of microorganisms
faster and more efficiently. The possibility of utilizing mass spectrometry (MS) and sequencing of 16S rRNA genes
to detect bacteria from urine were studied in this doctoral thesis. Classical microbiological tests were utilized to
identify bacteria isolated from the urine of patients with cystitis symptoms, after which microbiomes and
metaproteom were analyzed. Microbiome investigation included identifying genes for 16S rRNA, while MALDI-TOF
MS/MS (matrix aided laser desorption ionization-time of flight tandem mass spectrometry) analysis of the
metaproteome tried to acquire strain-level resolution. The aim of the study was to design and test an MS method
for direct, rapid, and reliable identification of microorganisms in urine samples of patients whose presence of
microorganisms > 105 CFU / ml was confirmed by traditional microbiological methods, and to compare the results
with those of genomic analysis of urine microorganisms. Also, the aim of the study was to monitor changes in the
composition of the urinary microbiota caused by cystitis and the dynamics of their change due to antibiotic
therapy. The research included the analysis of a total of 396 urine samples collected through four phases in KB
Dubrava. In addition, 40 culture samples from the four most frequent uropathogens were studied, as well as 8
urine samples from the same person who had been on antibiotic therapy to monitor changes in the urinary
microbiota. The findings of this study revealed that mass spectroscopy can be used to identify bacteria in
monomicrobial cultures at the genus level. Mass spectroscopy, on the other hand, does not yield good
identification results in polymicrobial cultures. The 16S rRNA gene provided taxonomic categorization of
uropathogens down to the genus (44 %) and family (56 %) levels, but not species level identification. It was
discovered that monitoring the urine microbiota during antibiotic therapy has a substantial influence on the
dynamics of changes in its composition, and that the duration of therapy, as well as the initial drug choice, is an
extremely essential therapeutic parameter.
Keywords
standardna urinokultura
mikroorganizmi
MALDI-TOF
MS/MS
profil peptida
16S rRNA sekvenciranje
Keywords (english)
standard urine culture
microorganisms
MALDI-TOF
MS / MS
peptide profile
16S rRNA sequencing
Language croatian
URN:NBN urn:nbn:hr:163:546208
Promotion 2022
Study programme Title: Pharmacy and biochemistry Study programme type: university Study level: postgraduate Academic / professional title: doktor znanosti (doktor znanosti)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2022-03-04 13:33:31