Title Detekcija prisustva i broja ljudi u Wi-Fi polju
Title (english) Detection of the presence and number of people in the Wi-Fi field
Author Tonka Hrboka
Mentor Dario Jukić (mentor)
Mentor Hrvoje Buljan (komentor)
Committee member Hrvoje Buljan (predsjednik povjerenstva)
Committee member Dario Jukić (član povjerenstva)
Committee member Ivica Smolić (član povjerenstva)
Committee member Davor Horvatić (član povjerenstva)
Committee member Marko Tomislav Cvitaš (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Physics) Zagreb
Defense date and country 2023-10-30, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Physics
Abstract Detekcija prisutstva ljudi u zatvorenom prostoru neophodna je za sigurnost u javnim ustanovama ili kućanstvima, a uobičajeno se obavlja kamerama koje imaju niz mana. Predložena je alternativna metoda detekcije ljudi Wi-Fi poljem koja ne narušava privatnost te izvedba nije skupa, štoviše većina ljudi već posjeduje Wi-Fi odašiljače. Koristi se činjenica da je relativna permitivnost ljudskog tijela na Wi-Fi frekvenciji visoka, stoga ljudi samim stajanjem u Wi-Fi polju mijenjaju njegova svojstva, bez potrebe za nošenjem nekog drugog uređaja. Strojnim učenjem obrađeni su podatci dobiveni eksperimentom u kojem su za različite veličine skupina ljudi u prostoriji mjerene RSSI vrijednosti Wi-Fi polja. Cilj je dobiti model koji će biti u mogućnosti predvidjeti broj ljudi u prostoriji na temelju neviđenih RSSI vrijednosti. Iznesena je fizika elektromagnetskih valova i njihove interakcije s materijom te osnove propagacije valova u komunikacijskim sustavima. Opisana je teorija algoritama plitkog učenja: logističke regresije, stroja potpornih vektora, k najbližih susjeda, stabla odluke te algoritma slučajnih šuma, a opisane su i osnove rada neuralnih mreža. Dobivene su vrlo visoke točnosti za predviđanje broja ljudi u prostoriji svih korištenih algoritama, preko 96 % za sve korištene plitke modele te preko 98 % za sve korištene neuralne mreže, a najveća točnost klasifikacije na neviđenim podatcima iznosi 99.2 %.
Abstract (english) Detection of the presence of people indoors is imperative for security in both public institutions and households. This is typically achieved through the use of cameras, which possess several drawbacks. An alternative method for detecting people using a Wi-Fi field is proposed. This approach respects privacy, is cost-effective, particularly given that the majority of individuals already possess Wi-Fi transmitters. It leverages the fact that the human body exhibits a high relative permittivity at Wi-Fi frequencies. Thus, merely by standing in a Wi-Fi field, individuals inadvertently alter its properties, obviating the need for additional devices. The data gathered from an experiment measuring RSSI values of the Wi-Fi field for various group sizes in a room were subjected to machine learning. The aim is to develop a model capable of predicting the number of people in the room based on unseen RSSI values. The text provides an overview of the physics of electromagnetic waves, their interaction with matter, and the fundamentals of wave propagation in communication systems. It also outlines the theory of shallow learning algorithms, such as logistic regression, support vector machines, k nearest neighbors, decision trees, and the random forest algorithm. Furthermore, it offers an introduction to the basics of neural networks. The results indicate very high prediction accuracies for the number of people in the room using all the mentioned algorithms. Specifically, all shallow models achieved accuracies exceeding 96 %, while neural networks surpassed 98 %. The highest classification accuracy on unseen data reached 99.2 %.
Keywords
strojno učenje
elektromagnetski val
dielektrik
Wi-Fi polje
RSSI vrijednost
nadzirano učcenje
klasifikacija
linearni diskriminativni model
neparametarski model
neuralna mreža
Keywords (english)
machine learning
electromagnetic wave
dielectric
Wi-Fi field
RSSI value
supervised learning
classification
linear discriminative model
non-parametric model
neural network
Language croatian
URN:NBN urn:nbn:hr:217:502736
Study programme Title: The University Integrated Undergraduate and Graduate Programme in Physics; Research Physics; specializations in: Research Physics Course: Research Physics Study programme type: university Study level: integrated undergraduate and graduate Academic / professional title: sveučilišni magistar fizike (sveučilišni magistar fizike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2024-01-26 14:00:59