Title Rekonstrukcijski teoremi i spektri
Author Josip Novak
Mentor Zoran Škoda (mentor)
Mentor Dražen Adamović (mentor)
Committee member Zoran Škoda (predsjednik povjerenstva)
Committee member Dražen Adamović (član povjerenstva)
Committee member Sonja Štimac (član povjerenstva)
Committee member Marko Erceg (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2017-09-27, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract U ovom radu dan je pregled nekih važnih rekonstrukcijskih teorema, odnosno, teorema koji daju vezu između dva objekta na način da je jedan objekt moguće potpuno rekonstruirati iz drugog i obratno. Važna klasa teorema rekonstrukcije su dualnosti geometrijskih prostora i pripadnih algebri funkcija. Ovdje spadaju Stoneova dualnost, Geljfand-Najmarkov teorem i rekonstrukcija algebarskih skupova koji su obrađeni u 2., 3. i 4. poglavlju rada. Osim prostora, moguće je rekonstruirati i neke druge geometrijske objekte, recimo snopove ili vektorske svežnjeve na prostoru. Primjer ovakve rekonstrukcije je afini Serreov teorem koji je dokazan u 5. poglavlju. Svi ovi teoremi izraženi su u jeziku teorije kategorija, pa je prvo poglavlje posvećeno osnovnim definicijama i rezultatima teorije kategorija. Ona nam omogućava i novu formulaciju algebarske geometrije u kojoj su prostori opisani kao reprezentabilni funktori. Ta takozvana funktorijalna geometrija omogućava nam jednostavan prijelaz na nekomutativni slučaj. Tako u 6. poglavlju dolazimo do definicije kvantnog prostora i kvantne grupe koja je grupa automorfizama kvantnog prostora. Još jedna važna klasa rekonstrukcijskih teorema odnosi se na rekonstrukciju objekata simetrije, primjerice grupe automorfizama, a obrađujemo ih u 7. poglavlju. Teoremi ovog tipa poznati su pod zajedničkim nazivom Tannakina dualnost, a opisuju rekonstrukciju grupa, grupoida, Hopfovih algebri i sličnih objekata iz kategorije njihovih reprezentacija. Zadnje poglavlje sadrži pregled nekih zajedničkih ideja teorema iz prethodnih poglavlja. Posebno je izložen razvoj pojma spektra i objašnjena važnost ovih dualnosti za nekomutativnu geometriju.
Abstract (english) In this thesis, we present some important examples of reconstruction theorems, i.e. theorems that give correspondence between two objects in the sense that one object can be completely reconstructed from the other. An important class of reconstruction theorems is duality between geometric spaces and function algebras. Included here are Stone duality, Gel’fand-Naimark theorem and reconstruction of algebraic sets, which are covered in chapters 2, 3 and 4. Apart from spaces, we can also reconstruct some other geometric objects, such as sheaves and vector bundles. Affine Serre theorem from chapter 5 is an example of such reconstruction. All of these theorems are stated in the language of category theory, which is why the first chapter is dedicated to basic definitions and results of category theory. Also, category theory provides us with a new formulation of algebraic geometry in which spaces are described as representable functors. This so-called functorial geometry enables us to transfer to the noncommutative case easily. This way we are able to define a quantum space and a quantum group, which is an automorphism group of a quantum space. Another important class of reconstruction theorems refers to reconstructing symmetry objects such as automorphism groups. We cover them in chapter 7. These theorems are known by their common name Tannaka duality, and they describe reconstructions of groups, groupoids, Hopf algebras and similar objects from their categories of representations. The last chapter gives an overview of some common ideas from the theorems of the preceding chapters. We present the development of the notion of spectrum and explain the importance of these dualities for noncommutative geometry.
Keywords
rekonstrukcijski teorem
teorem rekonstrukcije
Stoneova dualnost
Geljfand-Najmarkov teorem
rekonstrukcija algebarskih skupova
afini Serreov teorem
teorija kategorija
funktorijalna geometrija
Tannakina dualnost
Keywords (english)
reconstruction theorem
Stone duality
Gel’fand-Naimark theorem
reconstruction of algebraic sets
affine Serre theorem
category theory
functorial geometry
Tannaka duality
Language croatian
URN:NBN urn:nbn:hr:217:084069
Study programme Title: Pure Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2018-03-01 13:08:22