Title Hladnom plazmom potpomognuta laserska sinteza nanočestica u tekućinama i primjene
Title (english) Cold plasma assisted laser synthesis of nanoparticles in liquids and applications
Author Andrea Jurov
Mentor Nikša Krstulović (mentor)
Mentor Maja Planinić (mentor)
Committee member Maja Planinić (predsjednik povjerenstva)
Committee member Nikša Krstulović (član povjerenstva)
Committee member Damir Veža (član povjerenstva)
Committee member Ana Sušac (član povjerenstva)
Committee member Matko Milin (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Physics) Zagreb
Defense date and country 2016-07-15, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Physics
Abstract U ovom radu proučavali smo utjecaje različitih metoda impregnacije nanočestica na polimere. Ovo istraživanje je potaknuto željom da se pronađe što efikasniji način impregnacije nanočestica na polimere zbog njihovog raznolikog i vrlo korisnog utjecaja. Nanočestice same po sebi polimerima mijenjaju razna optička, fizikalna i kemijska svojstva te se tako mijenja kut močenja, učinkovitost apsorpcije, površinska mikrobiološka svojstva, funkcionalnost itd. S druge strane, tretiranje polimera atmosferskim plazmenim mlazom povećava hrapavost površine, a time najčešće polimeri postaju hidrofilniji, odnosno povećava se efektivna površina koja sudjeluje u impregnaciji nanočestica. Pretpostavka je da ćemo kombiniranjem ta dva procesa poboljšati željenje rezultate i povećati učinkovitost impregnacije polimera nanočesticama. Kako bi mogli impregnirati nanočestice, prvo smo ih sintetizirali metodom laserske ablacije u tekućini. Neke od dobivenih koloidnih otopina nanočestica smo analizirali pomoću spektrofotometra kako bi dobili ovisnosti aprobancije o valnim duljinama. Zanimao nas je kut močenja te smo mjerili kontaktne kuteve svih polimera za razne tekućine (deionizirana voda, koloidne otopine srebra, zlata i aluminija) što nam je dalo podatak o hidrofobnosti samih polimera. Pri procesu sinteze nanočestica laserskom ablacijom u tekućini, snimali smo optičke emisijske spektre plazme koja se stvara interakcijom laserske zrake i mete. Usporedbom spektra laserske ablacije mete na zraku sa Planckovim krivuljama zračenja crnog tijela odredili smo temperaturu mete. Za razliku od spektara laserske ablacije na zraku, koji uz kontinuum imaju jako izražene emisijske linije atoma i iona, spektri laserske ablacije u tekućini su dominantno kontinuirani. Ovi spektri ukazuju na to da u koloidnim otopinama nanočestica, dobivenih laserskom ablacijom u tekućini, prevladavaju nanočestice i njihovi aglomerati, a ne pojedinačni atomi i ioni. Optičke emisijske spektre smo snimali i pri procesu tretiranja polimera atmosferskim plazmenim mlazom. U ovom smo slučaju, uz neke linije atoma, primjetili i molekulske vrpce dušika te linije molekulskog iona dušika. U spektrima se ne vidi velika razlika između plazmenog mlaza na zraku i plazmenom mlaza pri interakciji sa polimerom. Uzorke smo impregnirali nanočesticama pomoću više metoda. Kao kontrolu smo koristili metodu centrifuge jer je to najčešća metoda impregnacije nanočestica. Pri toj metodi, jedan uzorak smo predtretirali plazmenim mlazom kako bi vidjeli postoji li razlika zbog utjecaja plazme. Ispostavilo se da je uzorak predtretiran plazmenim mlazom lakše impregnirati nanočesticama. Druga metoda koju smo koristili je metoda kapanja koloidne otopine na uzorak. Nakon isparavanja otopine, na polimeru ostaju samo nanočestice. Treća metoda impregnacije koju smo koristili je metoda gdje smo na polimer nakapali veću količinu koloidne otopine i tretirali ju plazmenim mlazom sve dok otopina nije isparila. Dobivene uzorke smo analizirali pomoću AFM-a , SEM-a i EDS-a. Iz rezultata se vidi da je najefikasnija metoda impregnacije polimera nanočesticama treća navedena metoda. Na slikama tih uzoraka vidimo najveću hrapavost i najveći broj nanočestica. U metodičkom dijelu rada obrađena je tema ‘Optički linijski spektri’ za 4. razred srednje škole. U ovoj nastavnoj jedinici cilj je upoznati učenike sa pojmom optičkog spektra posebno linijskih spektara. Učenici će naučiti razliku između kontinuiranog, emisijskog i apsorpcijskog optičkog spektra te kakvi izvori svjetlosti daju takve spektre.
Abstract (english) In this thesis we studied different methods of impregnating nanoparticles into polymers. This research was prompted by a desire to find a more efficient way of impregnating nanoparticles into polymers because of their diverse and very useful impact. Nanoparticles by themselves alter the optical, physical and chemical properties of polymers and change the angle of wettability, absorption efficiency, surface microbial properties, functionality etc. On the other hand, the atmospheric pressure plasma treatment of polymers increases effective surface roughness, which makes polymers more hydrophilic, and so the effective surface that participates in the impregnation of nanoparticles increases. The assumption is that in combining the two processes we will achieve the desired results and increase the efficiency of the impregnation of nanoparticles into polymers. In order to impregnate nanoparticles, first synthesised them through laser ablation in liquid. Some of the obtained colloidal solutions of nanoparticles were analysed using a spectrophotometer to assess the absorbancy spectrum. We were interested in the angle of wettability and we measured the contact angles of polymers for a variety of liquids (deionised water, a colloidal solution of silver, gold and aluminum) which provided us with information on the hydrophobicity of the polymer itself. In the process of the synthesis of nanoparticles by laser ablation in liquid, we aquired optical emission spectra of the plasma generated by the interaction of the laser beam and the target. By comparing the spectrum of laser ablation targets in the air with Planck's black body radiation curves, we determined the temperature of the target. Unlike the spectra of laser ablation in air, that along the continuum has highly expressed emission lines of atoms and ions, spectra of laser ablation in a liquid are predominantly continuous. These spectra indicate that the colloidal solution of nanoparticles obtained by laser ablation in a liquid, are predominant by nanoparticle agglomerates and not individual atoms and ions. Optical emission spectra were also recorded during the process of treatment the polymers with an atmospheric pressure plasma jet. In this case, with a few atomic lines, we detected molecular bands of nitrogen and lines of nitrogen molecular ion. The spectra did not show a big difference between the plasma jet in air and plasma jet in interaction with the polymer. The samples were impregnated by nanoparticles using multiple methods. As a control, we used spin coating because it is the most common method of impregnating nanoparticles. In this method, a sample was pretreated by a plasma jet to study the difference due to the influence of plasma. It was found that the samples which were pretreated by plasma jet were easier impregnated with nanoparticles. Another method we used was drop coating. After evaporating the solvent, only nanoparticles should remain. The third impregnation method that was used was treating the larger amount of colloidal solution on polymer by the plasma jet until the liquid from the solution evaporated. The resulting samples were analysed by AFM, SEM and EDS. The results showed that the most effective method of polymer impregnation by nanoparticles is the third mentioned method. These samples show the greatest roughness and the highest number of nanoparticles. The methodical part of the thesis covers ‘Optical line spectra’ for the fourth year of high school. In this unit the aim was to acquaint students with the concept of the optical spectrum, particulary the line spectrum. Students will learn the difference between the continuous, emission and absorption optical spectrums and what light sources give these spectra.
Keywords
hladna plazma
laserska sinteza
nanočestice
Keywords (english)
cold plasma
laser synthesis
nanoparticles
Language croatian
URN:NBN urn:nbn:hr:217:090313
Study programme Title: Physics; specializations in: Education Course: Education Study programme type: university Study level: integrated undergraduate and graduate Academic / professional title: magistar/magistra edukacije fizike (magistar/magistra edukacije fizike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2017-03-03 22:15:41