Abstract | Na krajevima linearnih kromosoma nalaze se nekodirajući zaštitni sljedovi DNA, telomere. Čine ih kratke ponavljajuće sekvence, npr. TTAGGG kod kralješnjaka, te proteini koji ih štite i sudjeluju u njihovoj funkciji. Jedna od njih jest razlikovanje krajeva kromosoma od dvolančanog loma kako ih stanični mehanizmi (NHEJ) ne bi "popravili" i uzrokovali fuzije kromosoma i nepoželjne rearanžmane koji bi doveli do krize stanice ili raka. Zbog problema replikacije krajeva kromosoma, DNA se skraćuje prilikom svake stanične diobe. Kako se ne bi gubili geni, gube se telomere, sve dok ne dostignu tzv. Hayflickovu granicu kada se stanica prestaje dijeliti zbog nezaštićenih kromosoma. Neke stanice i nestanični organizmi eksprimiraju enzim telomerazu koji produljuje telomere s pomoću svoje proteinske domene i RNA kalupa. Telomerazu eksprimiraju npr. matične stanice, te stanice raka. Potonje su uspjele ugasiti pRB i p53 putove koji dovode do senescencije stanica ili apoptoze, te povećati aktivnost telomeraze kako bi postale besmrtne. Također se koriste i alternativnim putovima produljenja telomera koji uključuju homolognu rekombinaciju. Pretpostavlja se da je senescencija evoluirala kako bi se spriječila tumorigeneza. Znanstvenici su, ipak, uspjeli usporiti starenje miševa s pomoću telomeraze bez povećanja učestalosti stvaranja tumora. Kako je skraćivanje telomera jedan od razloga zašto starimo, u budućim će se istraživanjima možda pronaći način kako da se produži ljudski život. Također, cjepiva za rak temeljena na telomerazi već se testiraju, s uspješnim rezultatima. |
Abstract (english) | Telomeres are non-coding protective sequences found at the end of linear chromosomes. They are made of repeating sequences, for example TTAGGG in vertebrates, and proteins that protect them and participate in their function. One of their functions is to distinguish the ends of the chromosomes from double-strand breaks – to prevent a cellular repair mechanism (NHEJ) from 'repairing' them which would lead to chromosome fusion and rearrangements, and, eventually, cell crisis or cancer. Because of the chromosome end replication problem, DNA is shortening with every cell division. In order to preserve genes from eroding, telomeres are the ones that are being lost, for until they reach the Hayflick limit when the cell stops dividing because of unprotected chromosomes. Some cells and noncellular organisms express an enzyme called telomerase which lengthens telomeres with its RNA template and protein domain. Telomerase is expressed, for example, in stem and cancer cells. The later have succeeded to shut down pRB and p53 pathways that would lead to cellular senescence or apoptosis, and to increase the activity of telomerase, making themselves immortal. Cancer cells also use alternative telomere lengthening mechanisms that include homologous recombination. It is assumed that senescence has evolved in a way to prevent tumorigenesis. Scientists, however, have succeeded to slow down ageing in mice with telomerase, without an increase in tumour occurrence. Telomere shortening is one of the reasons why we age, so future research could find a way to expand human lifespan. Additionally, vaccines for cancer based on telomerase are already being tested, with successful results. |