Title Podrazumijevana volatilnost
Author Blanka Horvatić
Mentor Nela Bosner (mentor)
Committee member Nela Bosner (predsjednik povjerenstva)
Committee member Franka Miriam Bruckler (član povjerenstva)
Committee member Tina Bosner (član povjerenstva)
Committee member Vedran Krčadinac (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2018-04-25, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract U diplomskom radu bavimo se temom podrazumijevane volatilnosti i njenom primjenom u financijama. U uvodnom poglavlju su pregledi modela i njihovih osnovnih značajki potrebnih za daljnji rad, npr. Black-Scholesov model, te Cox-Ross-Rubinsteinov model binomnih stabala. Prvo poglavlje daje kratki uvod u podrazumijevanu volatilnost, procijenjenu volatilnost cijene vrijednosnih papira, najčešće korištenu kod određivanja cijena opcija. Kako bi se odredila, potrebno je riješiti Black-Scholesovu formulu koristeći uočene cijene opcija za konstantnu volatilnost \(\sigma\). Značajka podrazumijevane volatilnosti je njena promjena obzirom na cijene izvršenja, takozvani "smile". Na kraju poglavlja koriste se dvije varijante glavnih komponenti. To su analiza glavnih komponenti za određivanje glavnih komponenti kod kretanja volatilnosti obzirom na vrijeme do dospijeća, te opća analiza glavnih komponenti koja omogućuje istovremeno modeliranje podrazumijevane volatilnosti obzirom na vrijeme dospijeća i cijenu izvršenja. Zatim se uvodi pojam podrazumijevanih binomnih stabala (IBT), metode koja ne ignorira "smile" efekt. Empirijske činjenica da podrazumijevana volatilnost pada s cijenom izvršenja, te raste s vremenom do dospijeća opcija bolje je opisana ovom strukturom nego standardnim CRR stablom. Osnovna upotreba IBT je u zaštiti od rizika te određivanju podrazumijevane vjerojatnosne distribucije (eng. state price density, SPD). Dana su dva algoritma za konstrukciju IBT-a. Prvo se upoznajemo s algoritmom Dermana i Kanija, a potom s onim Barlea i Cakicia. U posljednjem poglavlju govorimo o SPD-u te načinima određivanja istog. Osnovna ideja je da je cijena vrijednosnog papira jednaka očekivanoj sadašnjoj vrijednosti budućih isplata, a pritom je očekivanje uzeto obzirom na vjerojatnost neutralnu na rizik. Govorimo o nearbitražnom pristupu određivanja SPD-a. Prednost je što nema pretpostavki na kretanje vezane imovine. Prvo dajemo ideje za poluparametarsku procjenu funkcije cijene call opcije te potom predlažemo načine određivanja SPD-a i prezentiramo primjerom poluparametarsku procjenu istog.
Abstract (english) This master’s thesis deals with implied volatility and its usage in financial mathematics. First, in introduction we give some basic information about models used in this paper, e.g. the Black and Scholes model and Cox-Ross-Rubinstein model of binomial tree. First section gives introduction to implied volatility, estimated volatility of a security’s price, most commonly used when pricing options. To derive implied volatilities the Black and Scholes formula is solved for the constant volatility parameter \(\sigma\) using observed option prices. It appears to be non flat across strikes, a stylized fact which has been called ”smile” effect. In the end of this chapter we use two variants of principal components, standard principal component analysis to identify the dominant factor components driving term structure movements of options, and the common principal components approach that enables modeling not only term structure movements of implied volatilities but the dynamics of the ”smile” as well. Then we introduce the implied binomial tree (IBT) method which constructs a numerical procedure consistent with the volatility smile. The empirical fact that the market implied volatilities decrease with the strike level, and increase with the time to maturity of options is better reflected by this construction than standard CRR trees. The basic purpose of the IBT is its use in hedging and calculations of implied probability distributions (or state price density (SPD)), and volatility surfaces. Two algorithms for construction of IBT for a liquid European option are given. Firstly, we follow the Derman and Kani algorithm, discuss its possible shortcomings, and then present the Barle and Cakici construction. In the last chapter we talk about state price density and ways of obtaining it. The central idea is that the price of a financial security is equal to the expected net present value of its future payoffs under the risk-neutral probability density function. This method constitutes a no-arbitrage approach to recover the SPD. No assumption on the underlying asset dynamics are required. First, we propose ways for semiparametric estimation of the call pricing function and the necessary steps to recover the SPD. Then, in the end, an numerical example is given.
Keywords
volatilnost
Black-Scholesov model
Cox-Ross-Rubinsteinov model
podrazumijeva binomna stabla
IBT
smile efekt
podrazumijevana vjerojatnosna distribucija
SPD
algoritam Dermana i Kanija
algoritam Barlea i Cakicia
Keywords (english)
volatility
Black and Scholes model
Cox-Ross-Rubinstein model
implied binomial tree
IBT
volatility smile
implied probability distributions
state price density
SPD
Derman and Kani algorithm
Barle and Cakici construction
Language croatian
URN:NBN urn:nbn:hr:217:911996
Study programme Title: Finance and Business Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2018-08-30 11:19:55