Title Hijerarhija konveksnih funkcija
Author Elma Đaferović
Mentor Sanja Varošanec (mentor)
Committee member Sanja Varošanec (predsjednik povjerenstva)
Committee member Pavle Goldstein (član povjerenstva)
Committee member Nela Bosner (član povjerenstva)
Committee member Marko Erceg (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2018-07-17, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Konveksne funkcije predstavljaju važno mjesto u matematici, jer imaju mnogobrojnu primjenu u različitim područjima matematike. Početak proučavanja konveksnih funkcija vezan je uz danskog matematičara J.L.W.V. Jensena. U ovom radu razmotrili smo pitanje hijerarhije klasa konveksnih funkcija, odnosno pokazali smo da vrijedi \[K(b)\subset S^{*}(b)\subset S(b).\] U prvom poglavlju ovog rada izrekli smo osnovne definicije i svojstva konveksnih funkcija. Također smo iskazali i dokazali Jensenovu nejednakost i Hermite-Hadamardovu nejednakost za konveksne funkcije. Nakon konveksnih funkcija u drugom i trećem poglavlju definirali smo zvjezdaste i superaditivne funkcije. Nakon što smo dokazali nekoliko teorema i propozicija vezane uz konveksne, zvjezdaste i superaditivne funkcije na intervalu \([0,b]\), poglavlje smo zaključili proučavajući hijerarhiju konveksnih funkcija. U četvrtom poglavlju proučavali smo integralne sredine, tj. konveksne funkcije u srednjem, zvjezdaste u srednjem i superaditivne funkcije u srednjem te razmotrili hijerarhiju danih klasa funkcija: \[K(b)\subseteq MK(b)\subseteq S^{*}(b) \subseteq S(b)\subseteq MS^{*}(b)\subseteq MS(b).\] U posljednjem poglavlju ovog rada posvetili smo se poopćenju konveksnih funkcija. Definirali smo \(m\)-konveksne, \(m\)-zvjezdaste, \(m\)-superaditivne, \(m\)-konveksne funkcije u Jensenovom smislu, slabe \(m\)-konveksne funkcije u Jensenovom smislu, \(m\)-superaditivne funkcije u Jensenovom smislu, slabe \(m\)-superaditivne funkcije te razmotrili pitanje hijerarhije klasa tih funkcija.
Abstract (english) Convex functions play an important role in many areas of mathematics, because they have many applications in different fields of mathematics. Danish mathematician J.L.W.V Jensen is considered for the creator of this field of mathematics. In this paper we have studied the question of hierarchy of the convexity of functions. We proved strict inclusion: \[K(b)\subset S^{*}(b)\subset S(b).\] In the first section of this paper, we have given the several definitions and properties of convexity of functions. We have also expressed and proved Jensen’s inequality and Hermite-Hadamard’s inequality for convex functions. In Chapter 2 and 3 we defined starshaped and superadditive functions. After that we proved several theorems and propositions for convex, starshaped, and superadditive functions on \([0,b]\), we concluded chapter by studying hierarchy of convexity of this functions. In the fourth chapter, we extended our results by the arithmetic integral mean, respectively we studied the sets of functions which are convex, starshaped, respectively superadditive in the mean. We proved inclusions: \[K(b)\subseteq MK(b)\subseteq S^{*}(b) \subseteq S(b)\subseteq MS^{*}(b)\subseteq MS(b).\] At the end of this paper, we defined \(m\)-convex, \(m\)-starshaped functions, \(m\)-superadditive functions, Jensen \(m\)-convex functions, weak Jensen \(m\)-convex functions, Jensen \(m\)-superadditive functions, and weak \(m\)-superadditive functions. Some inclusions between such classes of functions are established.
Keywords
konveksne funkcije
Jensen
hijerarhija klasa konveksnih funkcija
Hermite-Hadamardova nejednakost za konveksne funkcije
Keywords (english)
convex functions
Jensen
hierarchy of the convexity of functions
Hermite-Hadamard’s inequality for convex functions
Language croatian
URN:NBN urn:nbn:hr:217:166087
Study programme Title: Mathematics Education; specializations in: Mathematics Education Course: Mathematics Education Study programme type: university Study level: graduate Academic / professional title: magistar/magistra edukacije matematike (magistar/magistra edukacije matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2018-11-23 10:46:01