Title Teorija brojeva kroz povijest
Author Ana Gmajnić
Mentor Filip Najman (mentor)
Committee member Filip Najman (predsjednik povjerenstva)
Committee member Andrej Dujella (član povjerenstva)
Committee member Zrinka Franušić (član povjerenstva)
Committee member Zvonko Čerin (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2015-09-23, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Teorija brojeva je grana matematike koja seže čak i do 4500 godina u prošlost te je jedna od najstarijih područja matematike. Rana povijest započinje Plimpton 322 pločom koja je dokument na kojem pronalazimo prve tragove teorije brojeva. Nakon toga, mnoge teoreme pronalazimo kod Pitagore (ca 500 g. pr. Kr.) koji se bavio pronalaskom prirodnih brojeva \(x, y, z\) za koje vrijedi \(x^2 + y^2 = z^2\). U Euklidovim Elementima (ca. 300. g. pr. Kr.) pronalazimo mnoge teoreme vezane uz djeljivost i proste brojeve. Pronalazimo i Euklidov algoritam koji se i danas koristi kao alat za pronalaženje najvećeg zajedničkog djelitelja. Također, Euklid spominje i Osnovni teorem aritmetike, kojeg je dokazao Gauss tek u 19. stoljeću. Nakon Euklida slijedi mračno razdoblje teorije brojeva te ona počinje biti zanimljiva tek matematičarima 16. stoljeća. Najpoznatiji matematičari u tom razdoblju su Marin Mersenne i Pierre de Fermat koji su proučavali svojstva prostih brojeva. Fermat je zaslužan za dva velika teorema tog razdoblja pod imenom Mali i Veliki Fermatov teorem. Mali Fermatov teorem je dokazao Leonhard Euler 1736., dok je Veliki Fermatov teorem dokazao Andrew Wiles tek 1994. godine. Leonhard Euler je jedan od najplodonosnijih matematičara u povijesti te je zaslužan za proučavanje teorije brojeva metodama matematičke analize. Također, mnogi ga smatraju najboljim matematičarem u povijesti. Eulerov suvremenik Christian Goldbach je iznio slutnju da se svaki broj veći od dva može zapisati kao zbroj dva prosta broja. Ta slutnja još uvijek nije dokazana. Bitni matematičari 18. stoljeća su bili i Joseph Louis Lagrange i Johann Friedrich Gauss. Lagrange je zaslužan za dokaz mnogih teorema, uključujući Wilsonov teorem te teorem o četiri kvadrata. Gauss je zaslužan za osnivanje teorije kongruencija te za dokaz zakona o kvadratnom reprocitetu. Također, proširio je skup cijelih brojeva na skup takozvanih Gaussovih cijelih brojeva. Konačno, u 19. stoljeću imamo dva bitna matematičara, a to su Legendre i Dirichlet. Legendre je, između ostalog, poznat po teoremu o gustoći prostih brojeva, dok je Dirichlet poznat po teoremu o prostim brojevima u aritmetičkom nizu.
Abstract (english) Number theory is one of the oldest branches of mathematics, and there is evidence that it has been around for some 4500 years. Early history starts with Plimpton 322 tablet on which we can find the first traces of number theory. After that, many theorems can be found in Pythagoras work (500 BC). Pythagoras was trying to find positive integers \(x, y, z\) for which \(x^2 + y^2 = z^2\) is valid. In Euclid’s Elements (300 BC) we can find many theorems that are related to divisibility and prime numbers. Also, we can find the Euclidean algorithm which is used, even today, for finding greatest common divisors. Euclid also mentions the fundamental theorem of arithmetic, which is proven by Gauss in the 19th century. After Euclid, number theory enters a dormant period which lasts until the 16th century, when it once again peaks interest amongst mathematicians. Noteworthy mathematicians in this period are Marin Mersenne and Pierre de Fermat who studied the properties of prime numbers. Fermat was responsible for two great theorems of that time, Fermat’s little theorem and Fermat’s last theorem. Fermat’s little theorem was proven by Leonhard Euler in 1736, and Fermat’s last theorem was proven by Andrew Wiles in 1994. Leonhard Euler is considered to be one of the most prolific mathematicians in history, and is responsible for studying number theory trough the methods of mathematical analysis. Euler’s contemporary Christian Goldbach came forward with a conjecture that stated: Any number greater than two can be written as the sum of two prime numbers. This conjecture has not yet been proven. Important mathematicians of the 18th century were Joseph Louis Lagrange and Johann Friedrich Gauss. Lagrange is responsible for proofs of many theorems, including Wilson’s theorem and the theorem of four squares. Gauss is responsible for establishing the theory of congruences and for the proof of the Law of Quadratic Reciprocity. Also, he expanded the set of integers to the set of so-called Gaussian integers. Finally, in the 19th century we have two important mathematicians, Legendre and Dirichlet. Legendre, among other things, is known for the prime number theorem, while Dirichlet is known for Dirichlet theorem on primes in arithmetic progression.
Keywords
teorija brojeva
Pitagora
Euklid
Gauss
Mersenne
Fermat
Mali Fermatov teorem
Veliki Fermatov teorem
Euler
Wiles
Goldbach
Lagrange
Wilsonov teorem
teorem o četiri kvadrata
teorija kongruencije
zakon o kvadratnom reprocitetu
Legendre
Dirichlet
Keywords (english)
number theory
Pythagoras
Euclid
Gauss
Mersenne
Fermat
Fermat's little theorem
Fermat's last teorem
Euler
Wiles
Goldbach
Lagrange
Wilson's theorem
theorem of four squares
theory of congruences
Law of Quadratic Reciprocity
Legendre
Dirichlet
Language croatian
URN:NBN urn:nbn:hr:217:668365
Study programme Title: Mathematics Education; specializations in: Mathematics Education Course: Mathematics Education Study programme type: university Study level: graduate Academic / professional title: magistar/magistra edukacije matematike (magistar/magistra edukacije matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2019-01-25 08:36:12