Title Matematika kaleidoskopa
Author Linda Sorić
Mentor Franka Miriam Bruckler (mentor)
Committee member Franka Miriam Bruckler (predsjednik povjerenstva)
Committee member Juraj Šiftar (član povjerenstva)
Committee member Ozren Perše (član povjerenstva)
Committee member Zvonko Čerin (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2015-04-23, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Kaleidoskopi su optički instrumenti za stvaranje i promatranje vizualno atraktivnih uzoraka. Dva matematička koncepta koja su usko vezana uz kaleidoskope, tj. uzorke koje oni tvore, su simetrije i grupe pa su to ujedno i glavne cjeline ovog diplomskog rada. Ovisno o broju zrcala u kaleidoskopu te o dimenziji prostora u kojoj ga promatramo, on može tvoriti dvodimenzionalne, trodimenzionalne, ali i apstraktne višedimenzionalne uzorke. Fokus ovog rada je na dvodimenzionalnim i trodimenzionalnim uzorcima odnosno njihovim simetrijama. Cilj je iz uzoraka na temelju vrste kaleidoskopa prepoznavati simetrije, ali i na temelju simetrija uzoraka prepoznavati vrste kaleidoskopa. Simetrije uzoraka nastalih kaleidoskopima obzirom na operaciju komponiranja cine grupu, a upravo je to tema druge cjeline rada. Dan je pregled poznatih grupa simetrija dvodimenzionalnih i trodimenzionalnih objekata: grupa rozeta, grupa tapeta, trodimenzionalnih točkinih i prostornih grupa. Kaleidoskopima s dvama zrcalima možemo generirati grupe rozeta. Dvodimenzionalnim kaleidoskopima s trima i četirima zrcalima možemo generirati pojedine od grupa tapeta, a trodimenzionalnim kaleidoskopima s trima zrcalima pojedine od trodimenzionalnih točkinih grupa. ”Zatvorenim” kaleidoskopima možemo generirati pojedine od prostornih grupa.
Abstract (english) Kaleidoscopes are optical instruments for creating and observing visually attractive patterns. Two mathematical concepts that are closely related to kaleidoscopes are symmetries and groups, so they determine two main chapters of this paper. Depending on the number of mirrors inside the kaleidoscope, and the dimension of the space we observe it in, kaleidoscope can form two-dimensional, three-dimensional or abstract multidimensional patterns. This paper is focused on two-dimensional and three-dimensional patterns and their symmetries. Our goal is the determination of the symmetries of a pattern based on type of kaleidoscope that formed it, and also the determination of the type of kaleidoscope based on symmetries of the resulting pattern. Symmetries of patterns created by kaleidoscopes, together with the operation of composition, form a group. Next, we give an overview of known symmetry groups related to two-dimensional and three-dimensional patterns: rosette groups, wallpaper groups, three dimensional point groups and space groups. Two-dimensional kaleidoscopes with two mirrors generate rosette groups. Two-dimensional kaleidoscopes with three and four mirrors generate certain wallpaper groups. Three-dimensional kaleidoscopes with three mirrors generate certain three-dimensional point groups. ”Closed box” kaleidoscopes generate certain space groups.
Keywords
kaleidoskop
optički instrument
simetrije
grupe
prepoznavanje vrste kaleidoskopa
grupa rozeta
grupa tapeta
trodimenzionalne točkine grupe
prostorne grupe
Keywords (english)
kaleidoscope
optical instruments
symmetries
groups
determination of the type of kaleidoscope
rosette groups
wallpaper groups
three dimensional point groups
space groups
Language croatian
URN:NBN urn:nbn:hr:217:488761
Study programme Title: Mathematics Education; specializations in: Mathematics Education Course: Mathematics Education Study programme type: university Study level: graduate Academic / professional title: magistar/magistra edukacije matematike (magistar/magistra edukacije matematike)
Type of resource Text
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2019-02-07 11:42:37