Title Istraživanje studentskog razumijevanja grafova u fizici i matematici
Author Elizabeta Kazotti
Mentor Ana Sušac (mentor)
Committee member Danko Radić (predsjednik povjerenstva)
Committee member Ana Sušac (član povjerenstva)
Committee member Nikola Poljak (član povjerenstva)
Committee member Željka Milin-Šipuš (član povjerenstva)
Committee member Zvonimir Tutek (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2015-07-10, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Physics
Abstract Istraživanje studentskog razumijevanja grafova u fizici i matematici provedeno je na 45 studenata nastavničkih studija fizike Prirodoslovno-matematičkog fakulteta i na 47 studenata psihologije Filozofskog fakulteta i Hrvatskih studija u Zagrebu uglavnom četvrte godine studija. Konstruiran je test koji je sadržavao četiri para paralelnih zadataka koji su ispitivali isti matematički koncept i sadržavali potpuno jednake grafove, samo je kontekst u pola zadataka bio iz kinematike (fizika), a u drugoj polovici svakodnevni kontekst vezan uz novac (matematika). Zadatci su ispitivali kvalitativno i kvantitativno razumijevanje nagiba i površine ispod grafa. Ispitanici su prvo rješavali zadatke na računalu prilikom čega su im snimani pokreti očiju. Nakon toga su iste zadatke rješavali na papiru te uz odabrani odgovor napisali i svoja obrazloženja. Kategorizacija obrazloženja ispitanika je dala uvid u najčešće korištene ispravne i pogrešne strategije u rješavanju zadataka iz konceptualnih područja nagiba i površine. Rezultati su pokazali da je studentima ideja nagiba (derivacije) intuitivno jasnija od ideje površine ispod grafa (integrala) funkcije te da su im kvalitativni zadatci lakši od kvantitativnih. Studenti fizike su bili bolji u rješavanju zadataka s grafovima od studenata psihologije u oba konteksta, ali jedan dio njih svoje razvijene postupke rješavanja fizikalnih zadataka s grafovima nije primijenio na analognim zadatcima u novim kontekstima, tj. fizikalne zadatke rješavao je bolje nego matematičke. Nasuprot tome, studenti psihologije su bili bolji u rješavanju kvalitativnih zadataka u kontekstu matematike, odnosno svakodnevnog života, nego fizike jer im je vjerojatno pomoglo svakodnevno iskustvo. Pomoću uređaja za mjerenje pokreta očiju dobiveno je vrijeme rješavanja zadataka. Dulje vrijeme rješavanja zadatka je ukazivalo na veću težinu zadatka jer su lošije riješeni zadatci uglavnom rješavani dulje vrijeme, npr. zadatci iz površine dulje su rješavani nego zadatci iz nagiba. Studenti su brže rješavali kvalitativne zadatke u kontekstu fizike dok su kvantitativne zadatke rješavali podjednako dugo u oba konteksta. Daljnja analiza načina gledanja i rješavanja zadataka pokazala je da su studenti fizike više analizirali svaki pojedini dio zadatka dok su se studenti psihologije već nakon kratke analize odlučili za odgovor koji smatraju točnim. Nadalje, studenti su općenito dulje gledali/analizirali pojedine dijelove zadatka u kontekstu matematike nego u kontekstu fizike što ukazuje na to da lakše i brže dolaze do rješenja zadataka kada se mogu osloniti na konkretne formule kojih se sjećaju iz školovanja, nego u slučaju kada trebaju primijeniti znanje u konkretnim situacijama i novim kontekstima. Slični rezultati dobiveni su i iz analize studentskih strategija. Rezultati ovog istraživanja ukazuju na to da transferi znanja između matematičkog i prirodoslovnog područja postoje, ali u nedovoljnoj mjeri te da nastavu tih predmeta treba osmišljavati, planirati i provoditi tako da se taj transfer poveća. U tu svrhu treba inzistirati na konceptualnom razumijevanju i integriranju sadržaja svakog predmeta zasebno, ali i između predmeta te manje inzistirati na zaključivanju pomoću formula i poticati argumentaciju riječima jer se njome razvija kritičko-logičko razmišljanje i način pristupa složenijim problemima, tj. treba primjenjivati interaktivne nastavne metode poučavanja koje podrazumijeva istraživački usmjerena nastava.
Abstract (english) Study of the student understanding of graphs in physics and mathematics was conducted on mostly fourth year students of the University of Science (45 students, preservice physics teachers) and Faculty of Humanities and Social Sciences and Centre for Croatian Studies in Zagreb (47 students of psychology). Constructed test consisted of four pairs of parallel questions which included exactly the same graphs: the context in one half of the questions was from kinematics (physics) and the other half of the questions was related to money (mathematics). The questions examined qualitative and quantitative understanding of the slope and area under the graph. The participants first solved the questions on the computer while their eye movements were recorded. Afterwards the same questions were solved on paper and along with the answer they had to provide explanations. Categorization of the explanations of the participants gave an insight in the most frequently used right and wrong strategies in solving the questions from the conceptual fields of graph slope and area under the graph. The results have shown that for students the idea of slope (derivation) is intuitively more understandable than the idea of area under the graph (integral) of the function, and the qualitative questions were easier than quantitative. Physics students were better than the psychology students in solving the questions about graphs in both contexts, however one part of them did not apply their developed procedures of solving questions about graphs on the analogue questions in new contexts, i.e. they solved the physics questions better than mathematical. On the contrary, students of psychology were better in solving qualitative assignments in the context of mathematics, regarding the everyday life, than physics, probably due to the everyday life experience. Question solving time was obtained with the assistance of the eye tracking device. Longer time of question solving suggested its higher difficulty because poorly solved questions took longer time, e.g. area questions took longer period than slope questions. The students were faster in solving the qualitative questions in the context of physics while quantitative questions took equal amount of time in both contexts. Further analysis of the question viewing and solving has shown that the physics students have analysed every single detail of the questions, while the psychology students only after a short analysis decided which answer was the right one. Furthermore, the students in general have taken longer time to view/analyse specific parts of the questions in the context of mathematics than physics which implies that it is easier to get the solutions when they can rely on solid formulas that they remember from the previous school period, as opposed to when they need to apply the knowledge in the specific situations and new contexts. Similar results were also obtained from the analysis of the students strategies. The results of this study imply that the transfer of knowledge between mathematics and science areas exist, but is insufficient, thus classes should be prepared, planned and conducted in order to increase the transfer. To reach that purpose we should insist on conceptual understanding and integration of content of each subject separately, yet also between subjects. We should insist less on the conclusions based on the formulas and encourage word elaboration for it develops critical and logical thinking, and the method of approaching complex problems, i.e. interactive enquiry-based teaching methods should be applied.
Keywords
grafovi
nagib i površina ispod grafa funkcije
mjerenje pokreta očiju
vrijeme rješavanja zadataka
kontekst zadatka
transfer znanja
Keywords (english)
graphs
slope and area under the graph function
eye tracking
period of question solving
context of question
knowledge transfer
Language croatian
URN:NBN urn:nbn:hr:217:641570
Study programme Title: Mathematics and Physics Education; specializations in: Mathematics and Physics Education Course: Mathematics and Physics Education Study programme type: university Study level: integrated undergraduate and graduate Academic / professional title: magistar/magistra edukacije matematike i fizike (magistar/magistra edukacije matematike i fizike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2019-02-08 10:06:13