Title Teorija igara i dizajn mehanizma
Author Melita Vidov
Mentor Lavoslav Čaklović (mentor)
Committee member Lavoslav Čaklović (predsjednik povjerenstva)
Committee member Miljenko Marušić (član povjerenstva)
Committee member Dražen Adamović (član povjerenstva)
Committee member Tomislav Pejković (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2016-09-27, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Ovaj diplomski rad je obradio temu dizajna mehanizma koja je temeljena na teoriji igara, podijeljenu obzirom na broj igrača. Za početak, obrađujemo mehanizme između jednog prodavača i jednog kupca. Prvo se bavimo davanjem cijene nerazdvojivom dobru gdje je prodavač dizajner mehanizma. Intuitivnim pristupom procjenjujemo da je prodavaču najbolje da na temelju procjene kupčevog tipa, koja je dana funkcijom distribucije, postavi cijenu te maksimizira očekivani profit. Zanima nas postoji li bolji mehanizam. Uvodimo pojam direktnog mehanizma te ograničenja poticajne kompatibilnosti i individualne racionalnosti koje su nužne za lakšu analizu problema. Olakotna okolnost je što se ispostavilo (za sva poglavlja) da za svaki indirektni mehanizam gdje kupac ne mora prijavljivati istinit tip, postoji odgovarajući direktni mehanizam (princip otkrivenja). Nadalje, karakteriziramo svojstva takvih mehanizama koja su potrebna u potrazi za optimizirajućim mehanizmom. Na kraju se ispostavilo da je početna intuitivna strategija bila najbolji izbor pošto je prodavačeva objektivna funkcija linearna jer nema rizika. Nakon toga prelazimo na nelinearno davanje cijena, tj. davanje cijene razdvojivom dobru, primjerice šećeru. Problem je malo kompleksniji te rezultat nije toliko trivijalan jer korisnost kupca više nije linearna zbog dodatno definirane funkcije ν koja nam omogućuje manipuliranje. Na temelju pretpostavke da je distribucija slučajne varijable prijavljenog tipa regularna, dobijemo efektivan način za zadavanje mehanizma koji maksimizira profit. Na kraju poglavlja obrađujemo primjer u kojem vidimo da nam je uvedena funkcija ν dala popust na količinu. Drugo poglavlje obrađuje Bayesove mehanizme gdje u igri tražimo Bayes-Nash ravnotežu između igrača. Poglavlje počinje promatranjem aukcije jednog nerazdvojivog dobra gdje kupac daje na aukciju dobro za \(N \geq 2\) agenata. Definiramo analogone već spomenute funkcije distribucije, direktnog mehanizma, principa otkrivenja, samo sada u slučaju problema više varijabli. Stoga, primorani smo definirati dodatne funkcije vjerojatnosti prodaje, očekivanog transfera i korisnosti koje ovise samo o prijavljenom tipu jednog agenta. Većina posljedica karakterizacije svojstava je analogna. Sličnom analizom kao u prethodnom poglavlju, dobijemo da dobro prodajemo kupcu s najvećom pozitivnom vrijednošću funkcije \(\psi\), inače ne prodajemo. Na kraju obrađujemo primjer koji pokazuje kako se intuitivno raspoređuje vjerojatnost prodaje dobra kupcima. Zadnja tema kojom se bavimo su javna dobra. Imamo zajednicu od \(N \geq 2\) ljudi koji moraju odlučiti hoće li proizvoditi neko nerazdvojivo dobro. Odluka se donosi na temelju troška proizvodnje i iznosa transfera koji plaćaju agenti. Uz već dobro znane pojmove, definiramo i svojstvo ex ante i ex post budžetske ravnoteže, koje u suštini govore da ukupni transfer mora biti veći od troška proizvodnje. Prije svega zaključujemo da su to zapravo dva ekvivalentna pojma, stoga možemo birati koje ćemo koristiti. Prvo maksimiziramo blagostanje zajednice. Intuicija nas navodi na tzv. prvi najbolji mehanizam koji kaže da će se dobro proizvoditi ako je ukupna suma tipova veća od cijene proizvodnje. Nažalost se ispostavi da se poticajno kompatibilan individualno racionalan mehanizam može konstruirati samo u trivijalnim slučajevima. Koristeći Kuch-Tucherov teorem dobijemo drugi najbolji mehanizam za netrivijalne slučajeve. Sličnom analizom dobijemo i optimizirajući mehanizam za maksimizaciju profita.
Abstract (english) This thesis processed mechanism design topic which is based on game theory, divided due to the number of players. At the beginning we analyze mechanisms between a seller and a buyer. First we deal with giving prices to single indivisible good where the seller is a mechanism designer. With intuitive approach we estimate that the best for the seller to do is based on assessments of the buyer’s type, which is given by distribution function, to set the price and maximizes expected profit. We are interested in whether there is better mechanism. We introduce the concept of direct mechanism and incentive compatibility and individual rationality constraints that are necessary for easier analysis of the problem. Mitigating circumstance is that it turned out (for all chapters) that for any indirect mechanism where the buyer does not have to report true type, there is appropriate direct mechanism (revelation principle). Furthermore, we bring characterizations of mechanisms that were necessary in pursuit of optimizing mechanism. At the end it turned out that the beginning strategy was the best choice because the seller’s objective function is linear because there is no risk. After that, we have moved to nonlinear pricing i.e., pricing divisible good, for example sugar. The outcome of this complex problem isn’t so trivial because buyer’s utility is no longer linear because of further defined function ν which enables us to manipulate. Based on assumptions that distribution of random variable for reported type is regular, we have got effective way for setting mechanism that maximizes profit. At the end of the chapter we have processed an example that shows that the introduced function ν gave as a discount on the amount. The second chapter process Bayesian mechanism where in the game we look for Bayes-Nash equilibrium between players. Chapter starts with observing an auction of one indivisible good where the buyer gives his good on an auction for \(N > 2\) agents. Then we define analogues of already mentioned distribution function, direct mechanism, revelation principle, only now in a case with multiple variables. Thus, we have to define additional probability function of the sale, expected transfer and utility that depends only on reported type of one agent. Most of the consequences of the characterization of properties is analog. With a similar analysis as in the previous chapter, we get that we will sell the good to the buyer with the largest positive value of the function “psi”, otherwise we won’t sell. At the end we have an example that shows how to distribute the likelihood of the sale of goods to customers. The last topic that we are dealing with are public goods. We have a community \(N \geq 2\) of people who have to decide whether they will produce some indivisible good. Decision is made on the basis of cost of production and the amount of transfers that agents pay. We also define the property ex ante and ex post of budget balance, which essentially says that overall transfers must be greater than the cost of production. We conclude that these are two equivalent concepts, therefore we can choose whichever we want to use. First we maximize welfare of the community. Intuition leads us to first best mechanism which tells us that the good will be produce if the total sum of the types is greater than the cost of production. Unfortunately, it turns out that incentive compatible, individually rational mechanism can be built only in trivial cases. Using Kuch-Tucherov theorem we get second best mechanism for non-trivial cases. With a similar analysis we get optimizing mechanism for profit maximization. By observing the example we can see that profit maximization requires bigger types of agents from that one that maximizes the welfare.
Keywords
dizajn mehanizma
teorija igara
direktni mehanizam
optimizirajući mehanizam
Bayesovi mehanizmi
Bayes-Nash ravnoteža
javna dobra
Kuch-Tucherov teorem
Keywords (english)
mechanism design
game theory
direct mechanism
optimizing mechanism
Bayesian mechanism
Bayes-Nash equilibrium
public goods
Kuch-Tucherov theorem
Language croatian
URN:NBN urn:nbn:hr:217:261528
Study programme Title: Finance and Business Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2019-02-18 13:55:30