Title Dugine tablice
Author Mirjana Horvat
Mentor Filip Najman (mentor)
Committee member Filip Najman (predsjednik povjerenstva)
Committee member Boris Muha (član povjerenstva)
Committee member Nenad Antonić (član povjerenstva)
Committee member Josip Tambača (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2018-09-26, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Cilj ovog diplomskog rada je s teorijske strane objasniti sigurnu komunikaciju, integritet poruka, hash-funkcije te dugine tablice. Prvi dio rada obrađuje dva najvažnija cilja kriptografije, odnosno pružanje privatnosti i integriteta podataka. Sama enkripcija općenito ne pruža integritet podataka, stoga bi se enkripcija trebala koristiti u kombinaciji s drugim tehnikama za postizanje autentifikacije poruke kao što je kod za autentifikaciju poruka, tzv. MAC. Drugi dio rada se odnosi na hash-funkcije koje uzimaju string proizvoljne duljine te ga "sažimu" u kraći string, tzv. hash-vrijednost. Posebno zanimljive su hash-funkcije otporne na kolizije. Kolizija funkcije \(H\) predstavlja par različitih ulaznih podataka \(x\) i \(x'\) takvih da vrijedi \(H(x)=H(x')\). Obično promatramo funkcije koje imaju beskonačnu domenu i konačnu kodomenu pa stoga zahtijevamo da su takve kolizije "teške" za pronaći. "Birthday" napad je općeniti napad koji pronalazi kolizije u svakoj hash-funkciji. Zatim smo predstavili Merkle-Damgardovu transformaciju koja se naširoko koristi u praksi za izradu hash-funkcija otpornih na kolizije. Merkle-Damgardova transformacija omogućuje konverziju iz bilo koje konačnodimenzionalne hash-funkcije u punopravnu hash-funkciju te pritom čuva svojstvo otpornosti na kolizije. Treći dio rada opisuje dugine tablice koje su razvijene kako bi se lozinka (podatak) izvela direktno iz hash-vrijednosti. Dugine tablice je otkrio P.Oechlin kao primjenu ranijeg algoritma Martina Hellmana. Glavno ograničenje originalne metode Martina Hellmana jest spajanje dva lanca prilikom sudara unutar iste tablice. Dugine tablice učinkovito rješavaju taj problem zamjenom jedne redukcijske funkcije sa nizom redukcijskih funkcija. Dugine tablice su neučinkovite protiv hash-vrijednosti koje uključuju duge vrijednosti "soli". Također, prevencija napada duginim tablica je istezanje ključa te jačanje ključa. S strane korisnika, preporuča se kreiranje lozinki koje su dulje od četrnaest znakova te korištenje simbola koji su izvan predviđenog raspona (npr., @, \(\%, \&,\dots\)).
Abstract (english) The aim of this diploma thesis is to theoretically explain what are secure communication, message integrity, hash-functions and rainbow tables. The first part of this thesis is concentrated on two most important goals of cryptography, i.e. obtaining private communication and guarantee message integrity. Encryption does not in general provide any integrity, therefore encryption should be used in combination with other techniques for message authentication such as Message Authentication Code (MAC). The second part of this thesis refers to hash-functions that are mapping strings of arbitrary length to strings of some fixed length, called hash-values. Particularly interesting are collision-resistant hash-functions. A collision in a function \(H\) is a pair of distinct inputs \(x\) and \(x'\) such that \(H(x)=H(x')\). Usually, we consider functions that have an infinite domain and a finite range, so a requirement is therefore that such collisions should be ”hard” to find. ”Birthday” attack finds a collision in any hash-function. Then we presented the Merkle-Damgard transform that is used for constructing collision-resistant hash-functions. The Merkle-Damgard transform enables a conversion from any fixed-length hash-function to an arbitrary-length hash-function while maintaining the collision resistance property. The third part of this thesis describes rainbow tables which have been developed for cracking password directly from hash-values. Rainbow tables were invented by P.Oechlin as an application of an earlier algorithm by Martin Hellman. The main restriction of the original method is the fact that when two chains collide in a single table they merge. Rainbow tables efficiently solve this problem by replacing one reduction function with successive reduction functions. Rainbow tables are ineffective against hash-values that include large ”salts”. Also, important techniques that help with prevention for those attacks are key stretching and key strengthening. From the side of the user, it is recommended to use passwords that have more than fourteen characters and to use symbols that are out of the usual range (eg., @, \(\%, \&,\dots\)).
Keywords
sigurna komunikacija
integritet poruka
hash funkcije
dugine tablice
kriptografija
enkripcija
Merkle-Damgardova transformacija
Keywords (english)
secure communication
message integrity
hash-functions
rainbow tables
cryptography
encryption
Merkle-Damgard transform
Language croatian
URN:NBN urn:nbn:hr:217:130487
Study programme Title: Applied Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2019-04-25 12:04:52