Title Matematika igre SET
Title (english) Math Game SET
Author Ana Dragojević
Mentor Mea Bombardelli (mentor)
Committee member Mea Bombardelli (predsjednik povjerenstva)
Committee member Darko Androić (član povjerenstva)
Committee member Ilja Gogić (član povjerenstva)
Committee member Maja Planinić (član povjerenstva)
Committee member Mladen Jurak (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2021-03-05, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract SET je iznimno zabavna misaona igra kartama najmijenjena djeci i odraslima. Igrajući SET mnogi ne bi naslutili da se u pozadini igre krije matematika. Osim što je zabavna i vrlo zarazna, igra se povezuje s mnogim matematičkim problemima iz područja afine geometrije, linearne algebre, teorije skupova, kombinatorike i vjerojatnosti. Ovaj se rad temelji na geometrijskoj interpretaciji igre SET pomoću konačnog vektorskog i afinog prostora \(\mathbb Z_3^4\). Tokom igre pojavljuju se mnoga pitanja do čijih se odgovora dolazi matematičkim “alatima”. Glavni je problem rada doći do odgovora na jedno od tih pitanja. U matematičkoj interpretaciji SET-a rješavanje postavljenog problema svodi se na pronalasku maksimalne veličine podskupa točaka unutar afinog prostora \(\mathbb Z_3^4\) koji ne sadrži pravac, takozvana 4-kapica. Općenito, maksimalna veličina \(n\)-kapice u \(\mathbb Z_3^n\) poznata je za \(n\leq6\) , a za ostale dimenzije moguće je odrediti samo gornju granicu i to pomoću teorema koji iznosimo u radu. Za prve četiri dimenzije pomoću igre SET pronalazimo primjer maksimalne \(n\)-kapica, a zatim matematički dokazujemo da je veličina pronađene n-kapice zaista maksimalna moguća. Osim toga, rad se bavi i nekim osnovnim svojstvima afinog prostora \(\mathbb Z_3^n\) i posebno geometrijom u \(\mathbb Z_3^n\) za \(n\) = 1, 2, 3, 4. Posljednje poglavlje posvećeno je primjeni igre SET u nastavi matematike. SET je igra kartama pa otvara mnoga kombinatorna i vjerojatnosna pitanja koja možemo postaviti učenicima srednje škole i potaknuti ih na logičko i apstraktno razmišljanje. Isto tako, SET predstavlja konkretan model skupa pa iznosimo i način na koji bi učenici osnovne i srednje škole pomoću zabavne igre mogli uspješno savladati osnovne operacije sa skupovima.
Abstract (english) SET is an extremely fun thoughtful card game intended for children and adults. What many wouldn’t assume while playing SET is the fact that mathematics is hidden in the core of the game. Apart from being fun and highly addictive, the game associates with many mathematical problems from the field of affne geometry, linear algebra, set theory, combinatorics and probability. This paper is based on the geometric interpretation of the game SET with the help of finite vector and affne space \(\mathbb Z_3^4\). During the course of the game, many problems arise for which the answers are found by mathematical ”tools”. The main problem of the paper is getting an answer to one of those questions. In the mathematical interpretation of SET, solving a set problem comes down to finding the maximum value of a subset of points inside affne space \(\mathbb Z_3^4\) which doesn’t contain a line, the so-called 4-cap. Generally, the maximum value of an \(n\)-cap in \(\mathbb Z_3^n\) is known for \(n\leq6\), whereas for other dimensions it’s possible only to determine the upper limit, which is done with the help of the theorem we’re stating in the paper. For the first four dimensions with the help of the game SET we are coming across an example of a maximum \(n\)-cap, then we mathematically prove that the value of found n-cap is indeed the highest possible. Besides that, the paper deals with some basic properties of affne space \(\mathbb Z_3^n\) and especially the geometry in \(\mathbb Z_3^n\) for \(n\) = 1, 2, 3, 4. The last chapter is dedicated to the application of the game SET in mathematics classes. SET is a card game so it opens many combinatorial and probabilistic questions which can be presented to high school students and encourage them to think logically and abstractly. SET also presents a concrete model of sets so we are presenting a way in which elementary and high school students would be able to grasp basic set operations with the help of a fun game.
Keywords
igra kartama SET
afina geometrija
linearna algebra
teorija skupova
kombinatorika
vjerojatnost
Keywords (english)
card game SET
affne geometry
linear algebra
set theory
combinatorics
probability
Language croatian
URN:NBN urn:nbn:hr:217:073186
Study programme Title: Mathematics and Physics Education; specializations in: Mathematics and Physics Education Course: Mathematics and Physics Education Study programme type: university Study level: integrated undergraduate and graduate Academic / professional title: magistar/magistra edukacije matematike i fizike (magistar/magistra edukacije matematike i fizike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2021-03-24 12:30:41