Title Detekcija meteora metodama umjetne inteligencije
Title (english) Meteor detection using artificial intelligence methods
Author Marin Sorić
Mentor Zlatan Car (mentor)
Committee member Alfredo Višković (predsjednik povjerenstva)
Committee member Zlatan Car (član povjerenstva)
Committee member Rene Prenc (član povjerenstva)
Granter University of Rijeka Faculty of Engineering (Department of Automation and Electronics) (Section of Electronics, Robotics and Automation) Rijeka
Defense date and country 2020-09-22, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Electrical Engineering
Abstract Astronomija je znanost koja se usko bavi proučavanjem nastanka meteorida u svemiru,
njihovog ulaska u zemljinu atmosferu u obliku meteora i stjenovitih oblika na zemljinoj površini
u obliku meteorita. Strujanje nebeskih tijela u svemiru i njihov ulazak u zemljinu atmosferu je
potrebno promatrati pažljivo i redovito zbog astronomskih i sigurnosnih razloga. Iako su meteori
i ostala svemirska tijela koja ulaze u zemljinu atmosferu apstraktan pojam za većinu populacije,
zanimljivo je upoznati se s njihovim definicijama, oblikom, veličinom i drugim važnim
informacijama koje su o njima dostupne. Meteorske pojave može proučavati i istraživati svaki
pojedinac koji nije usko vezan uz neku astronomsku organizaciju.
Značaj detekcije meteora u astronomiji primjenom metoda umjetne inteligencije se u
suvremeno doba sve više povećava. Razlog tome je što se računalnim putem pomoću
implementacije konvolucijskih i umjetnih neuronskih mreža može kvalitetno detektirati pojava
meteora ili nekog drugog nebeskog tijela na slici. Računalna metoda detekcije također omogućuje
brži, kvalitetniji i točniji oblik detekcije nego što je to vrsta detekcije koja se koristila kroz povijest,
te oslobađa astronome dodatnog posla. Tema ovog diplomskog rada je klasifikacija slika koje
sadrže detekciju meteora i slika koje ne sadrže detekciju meteora pomoću konvolucijske neuronske
mreže. Kako bi se prikazala primjena umjetne inteligencije u procesu detekcije meteora u
diplomskom radu je korišten Pyhton programski jezik u kojem se u neuronsku mrežu unio set
slika. Dobiveni rezultati za set od 200, 400, 1000, 1400, 2000, 2600 slika pokazuju kako se rad i
stablinost konvolucijske neuronske mreže poboljšava s rastom FITS podataka koji se mreži daju
na učenje u procesu treniranja
Abstract (english) Astronomy is a science the object of which is to study closely the origin of meteorids in the
Universe, their entering the Earth’s atmosphere in the form of meteors and rocky objects on the
Earth’s surface in the form of meteorites. The streaming of celestial objects in the Universe and
their entering the earth’s atmosphere needs to be carefully and regularly observed for astronomic
and security reasons. Although for the majority of people, meteors and other celestial objects
entering the Earth’s atmosphere are an abstract notion, it is interesting to become familiar with
their definitions, form, size and other important information available. Meteoric phenomena can
be studied and researched by every individual, who is not closely linked to some astronomic
organization.
In contemporary astronomy, the importance of detecting meteors using the methods of
artificial intelligence has been on constant increase. The reason being the fact that by way of
computers, with the assistance of convolutional and artificial neural networks, the appearance of
a meteor or another celestial object in the image can be detected in a high-quality manner.
Computer detection method enables also a faster, higher quality and more precise form of detection
than it was the case with detection methods used in the past, relieving the astronomers of extra
work. The topic of this graduation thesis is the classification of images which contain meteor
detection and those which do not, using convolutional neural networks. In order to show the
application of artificial intelligence in the meteor detection process, Pyhton programming language
was used in this graduation thesis, with a set of images inserted in the neural network. The results
obtained for the set of 200, 400, 1000, 1400, 2000, 2600 images demonstrate how the operation
and stability of the convolutional neural network are improved with the growth of FITS data which
are given to the network for learning in the training process.
Keywords
meteor
meteorit
meteorid
umjetna inteligencija
FITS datoteke
konvolucijska neuronska mreža
Keywords (english)
meteor
meteorite
meteorid
artificial intelligence
FITS files
convolutional neural network
Language croatian
URN:NBN urn:nbn:hr:190:022746
Study programme Title: Graduate University Study of Electrical Engineering Study programme type: university Study level: graduate Academic / professional title: magistar/magistra inženjer/inženjerka elektrotehnike (magistar/magistra inženjer/inženjerka elektrotehnike)
Type of resource Text
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2021-09-17 08:27:40