Title Izrada 3D modela za strojno učenje kirurških instrumenata
Title (english) Development of 3D models for surgical instruments machine learning
Author Matea Grdić
Mentor Sven Maričić (mentor)
Committee member Nikola Tanković (predsjednik povjerenstva)
Committee member Sven Maričić (član povjerenstva)
Committee member Darko Etinger (član povjerenstva)
Granter University of Pula (Faculty of Informatics in Pula) Pula
Defense date and country 2021-09-29, Croatia
Scientific / art field, discipline and subdiscipline SOCIAL SCIENCES Information and Communication Sciences Information Systems and Information Science
Abstract Posljednjih nekoliko godina tehnologije zasnovane na umjetnoj inteligenciji brzo su napredovale, tijekom prethodna dva desetljeća svjedoci smo velikog napretka u umjetnoj inteligenciji i njenoj primjeni. Neki od najranijih radova u uspješnoj primjeni umjetne inteligencije dogodili su se upravo u medicinskom kontekstu. U radu su objašnjene osnove umjetne inteligencije, strojnog i dubokog učenja. Dat je pregled umjetne inteligencije u medicini te prednosti njenog korištenja u raznim područjima medicine. Objašnjeno je područje računalnog vida s naglaskom na detekciju objekta te su opisana neka istraživanja u tom području. Opisani su algoritmi strojnog učenja, neuronske mreže, umjetne neuronske mreže te konvolucijske neuronske mreže. U sklopu rada izrađena je aplikacija koja prepoznaje kirurške instrumente. U izradi aplikacije korišteni su razvojni alati: Cloud Annotations, Colaboratory i Node-RED. Za trening modela poslužila je biblioteka strojnog učenja TensorFlow i programski jezik Python. Model strojnog učenja u TensorFlow.js formatu, ukomponiran je s grafičkim sučeljem, izrađenim koristeći razvojni alat Node-RED i programski jezik JavaScript. Aplikacija korisniku omogućuje izravno fotografiranje slike te učitavanje slike s računala za njeno prepoznavanje. Aplikacija prepoznaje pet različitih kirurških instrumenata: zakrivljene kirurške škare, ravne kirurške škare, skalpel, kiruršku pincetu te hvataljke.
Abstract (english) In the last few years, technologies based on artificial intelligence have advanced rapidly, and over the past two decades, we have witnessed great progress in artificial intelligence and its application. Some of the earliest work in the successful application of artificial intelligence occurred precisely in the medical context. This paper explains the basics of artificial intelligence, machine, and deep learning. An overview of artificial intelligence in the medical field and the advantages of its use in various fields of medicine is given. The area of computer vision is explained with an emphasis on object detection. The paper describes machine learning algorithms, neural networks, artificial neural networks, and convolutional neural networks. As part of this thesis, was developed an application that classifies surgical instruments. The following development tools were used in the development of the application: Cloud Annotations, Colaboratory, and Node-RED. The TensorFlow machine learning library was used for model training and the Python programming language. The machine learning model in TensorFlow.js format is integrated with a graphical interface, that is created using the development tool Node-RED and the JavaScript programming language. The application allows the user to take a photo directly or load the image from a computer to recognize it. The application recognizes five different surgical instruments: curved surgical scissors, flat surgical scissors, scalpel, surgical tweezers, and forceps.
Keywords
umjetna inteligencija u medicini
strojno učenje
računalni vid
umjetne neuronske mreže
Node-RED
TensorFlow.js
Keywords (english)
Artificial intelligence in medicine
machine learning
computer vision
artificial neural networks
Node-RED
TensorFlow.js
Language croatian
URN:NBN urn:nbn:hr:137:571618
Study programme Title: Master in Informatics; specializations in: Master in Informatics, Master in Informatics, specialisation: teaching, Master in Informatics, Master in Informatics, specialisation: teaching Course: Master in Informatics Study programme type: university Study level: graduate Academic / professional title: MAGISTAR/MAGISTRA INFORMATIKE - MAG.INF. (MAGISTAR/MAGISTRA INFORMATIKE - MAG.INF.)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2021-10-18 10:50:45