Title Model dvostruke poroznosti
Author Ivana Radišić
Mentor Mladen Jurak (mentor)
Committee member Mladen Jurak (predsjednik povjerenstva)
Committee member Eduard Marušić-Paloka (član povjerenstva)
Committee member Josip Tambača (član povjerenstva)
Committee member Andrej Dujella (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2014-09-24, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract U ovom radu smo izveli model dvostruke poroznosti koji opisuje gibanje fluida kroz frakturiranu poroznu sredinu. Frakturirana porozna sredina
Ω je porozna sredina koja se sastoji od matrice poroznih blokova
Ω ε m , koja je okruzena sustavom fraktura
Ω ε f , gdje parametar
ε predstavlja veličinu matričnog bloka. U radu smo najprije opisali model jednofaznog toka fluida na mikroskopskoj skali. Dobili smo sljedeću inicijalno rubnu zadaću
... More { Φ ε ∂ ∂ t ρ ε − d i v ( K ε μ c ∇ ρ ε ) = f u Ω × ( 0 , T ) ρ ε = ρ b d na Γ D × ( 0 , T ) K ε μ c ∇ ρ ε ⋅ ν Ω = h na Γ N × ( 0 , T ) ρ ε = ρ i n i t na Ω × { 0 } , gdje ρ ε predstavlja gustoću fluida unutar Ω , a Φ ε i K ε su funkcije poroznosti i propusnosti fluida Φ ε ( x ) = { Φ ∗ x ∈ Ω ε f ϕ ε ( x ) x ∈ Ω ε m , K ε ( x ) = { K ∗ x ∈ Ω ε f ε 2 k ε ( x ) x ∈ Ω ε m , Pomoću teorije homogenizacije izveli smo model na makroskopskoj skali gdje smo funkcije Φ ε i K ε zamijenili sljedećim funkcijama Φ H = | Y f | | Y | Φ ∗ K H = K ∗ 1 | Y | ∫ Y f ( ∇ y ω ( y ) + I ) d y , te smo dobili model dvostruke poroznosti { Φ H ∂ t ρ 0 f − d i v ( K H μ c ∇ ρ 0 f ) = f − 1 | Y | ∫ Y m ϕ ( y ) ∂ t ρ 0 m d y u Ω × ( 0 , T ) ρ 0 f = ρ b d na Γ D × ( 0 , T ) K H μ c ∇ ρ 0 f ⋅ ν Ω = h na Γ N × ( 0 , T ) ρ 0 f = ρ i n i t f na Ω × { 0 } , { ϕ ( y ) ∂ t ρ 0 m ( x , y , t ) − d i v y ( k ( y ) μ c ∇ y ρ 0 m ( x , y , t ) ) = f ( x , t ) u Ω × Y m × ( 0 , T ) ρ 0 m ( x , y , t ) = ρ 0 f ( x , t ) na Ω × ∂ Y m × ( 0 , T ) ρ 0 m ( x , y , 0 ) = ρ i n i t m ( x ) na Ω × Y m . Prostornu i vremensku diskretizaciju modela smo proveli primjenom metode konačnih elemenata, odnosno implicitne Eulerove metode. Numeričku usporedbu modela proveli smo pomoću DUNE-a, software-a za rješavanje parcijalnih diferencijalnih jednadžbi. Došli smo do zaključka da je model na makroskopskoj skali manje zahtjevan za numeričko rješavanje, jer zahtjeva manji broj elemenata u triangulaciji domene Ω . Modele smo testirali za različite vrijednosti parametra ε , te smo primijetili da se relativna greska numeričkih rješenja makroskopskog i mikroskopskog modela smanjuje sa smanjenjem parametra ε . Less
Abstract (english) In this paper we derived double porosity model of flow in fractured porous media. Fractured porous media
Ω contains system of fracture planes
Ω ε f dividing the porous rock into collection of blocks
Ω ε m . In this paper we first have described model of single phase flow on a microscopic scale. Single phase flow is described by following equations \begin{align*} \begin{cases} \Phi^\varepsilon \frac{\partial}{\partial t}\rho^\varepsilon - div
... More \left( \frac{K^\varepsilon}{\mu c} \nabla \rho^\varepsilon \right)=f &\text{u } \Omega \times (0,T)\\ \rho^\varepsilon=\rho_{bd} &\text{na} \: \Gamma_D \times (0,T)\\ \frac{K\varepsilon}{\mu c} \nabla \rho^\varepsilon \cdot \nu_\Omega=h &\text{na } \Gamma_N \times (0,T)\\ \rho^\varepsilon=\rho^{init} &\text{na } \Omega \times \{0\}, \end{cases} \end{align*} where ρ ε denotes fluid density. Φ ε and K ε are porosity and permeability functions Φ ε ( x ) = { Φ ∗ x ∈ Ω ε f ϕ ε ( x ) x ∈ Ω ε m , K ε ( x ) = { K ∗ x ∈ Ω ε f ε 2 k ε ( x ) x ∈ Ω ε m , Macroscopic model is derived from homogenization theory. We have replaced Φ ε and K ε by following functions Φ H = | Y f | | Y | Φ ∗ K H = K ∗ 1 | Y | ∫ Y f ( ∇ y ω ( y ) + I ) d y , Double porosity model is given by { Φ H ∂ t ρ 0 f − d i v ( K H μ c ∇ ρ 0 f ) = f − 1 | Y | ∫ Y m ϕ ( y ) ∂ t ρ 0 m d y u Ω × ( 0 , T ) ρ 0 f = ρ b d na Γ D × ( 0 , T ) K H μ c ∇ ρ 0 f ⋅ ν Ω = h na Γ N × ( 0 , T ) ρ 0 f = ρ i n i t f na Ω × { 0 } , { ϕ ( y ) ∂ t ρ 0 m ( x , y , t ) − d i v y ( k ( y ) μ c ∇ y ρ 0 m ( x , y , t ) ) = f ( x , t ) u Ω × Y m × ( 0 , T ) ρ 0 m ( x , y , t ) = ρ 0 f ( x , t ) na Ω × ∂ Y m × ( 0 , T ) ρ 0 m ( x , y , 0 ) = ρ i n i t m ( x ) na Ω × Y m . We applied finite element method for spatial discretization and backward Euler for discretization in time. Numerical model comparison is done by DUNE, modular toolbox for solving partial differential equations. We have concluded that double porosity model is much easier to approximate computationaly because it requires less grid elements. Models have been tested for different ε values. We have noticed that relative error decreases as ε decreases. Less
Keywords
model dvostruke poroznosti
gibanje fluida kroz frakturiranu poroznu sredinu
DUNE software-a za rješavanje parcijalnih diferencijalnih jednadžbi
Keywords (english)
double porosity model
flow in fractured porous media
DUNE modular toolbox for solving partial differential equations
Language croatian
URN:NBN urn:nbn:hr:217:628243
Study programme Title: Applied Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2019-02-01 11:05:32