Title Teoremi ulaganja Soboljevljevih prostora i primjene
Author Ana Radošević
Mentor Mladen Jurak (mentor)
Committee member Mladen Jurak (predsjednik povjerenstva)
Committee member Maja Starčević (član povjerenstva)
Committee member Marko Vrdoljak (član povjerenstva)
Committee member Nenad Antonić (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2014-12-08, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract U ovom radu dokazali smo teoreme ulaganja Soboljevljevih prostora \(W^{k,q}\) u \(L^p\) prostore (ili čak Hölderove prostore, ako je \(kq > n\), gdje je \(n\) dimenzija prostora \(\mathbb{R}^n\)) na ograničenim (dovoljno glatkim) domenama. Među njima je posebno važan Rellich-Kondrachovljev teorem, koji osigurava kompaktnost određenih ulaganja, što smo u dva primjera iskoristili za dokaz egzistencije rješenja nelinearnih rubnih zadaća. Prvi je primjer kvazilinearna eliptička PDJ s homogenim rubim uvjetom \begin{align*} \begin{cases} -\Delta u + b(Du) + \mu u =0 &\text{na } \Omega\\ u = 0 & \text{na } \partial \Omega, \end{cases} \end{align*} gdje je \(\Omega\) ograničena domena klase \(C^2\). Pretpostavili smo da je \(b : \mathbb{R}^n \to \mathbb{R}\) Lipschitzova te zadovoljava uvjet na rast \(\left| b(p) \right| \leq C(\left| p \right| + 1)\) za neki \(C\) i za sve \(p \in \mathbb{R}^n\). Egzistencija rješenja \(u \in H^2(\Omega) \cap H_0^1(\Omega\)) ove zadaće pokazana je pomoću Schauderovog teorema o fiksnoj točki, čija je pretpostavka kompaktnosti odgovarajućeg operatora osigurana kompaktnošću ulaganja \(H^2(\Omega) \subset H^1(\Omega)\). Drugi je primjer stacionarna Navier-Stokesova zadaća, također s homogenim rubnim uvjetom, na ograničenoj glatkoj domeni \(\Omega\), \begin{align*} \begin{cases} -\mu \Delta \textbf{u} + (D \textbf{u})\textbf{u} + \text{grad } p = \textbf{f} &\text{na } \Omega\\ div \: \textbf{u} = 0 &\text{na } \Omega\\ \textbf{u} = 0 &\text{na } \Gamma, \end{cases} \end{align*} gdje su vektorska funkcija \(\textbf{u} = (u_1, \dots , u_n)\) i skalarna funkcija \(p\) tražene funkcije, dok je \(\textbf{f}\) zadana. Ovdje je egzistencija rješenja pokazana pomoću Galerkinove metode, dakle konstruirali smo ograničen niz aproksimativnih rješenja te na limesu nekog njegovog podniza dobili rješenje. Za to nam je bila potrebna kompaktnost ulaganja \(H_0^1(\Omega) \subset L^2(\Omega)\).
Abstract (english) In this thesis we proved the Sobolev embedding theorems of spaces \(W^{k,q}(\Omega)\) in \(L^p\) spaces (or even Hölder spaces, when \(kq > n\), where \(n\) is the dimension of \(\mathbb{R}^n\)) on bounded (smooth enough) domains. Among them, the Rellich-Kondrachov Theorem is particularly important, since it provides compactness of certain embeddings, which we have used in two examples to prove the existence of solutions of nonlinear boundary problems. The first example is the quasilinear elliptic PDE with homogeneous boundary condition \begin{align*} \begin{cases} -\Delta u + b(Du) + \mu u =0 &\text{on } \Omega\\ u = 0 & \text{on } \partial \Omega, \end{cases} \end{align*} where \(\Omega\) is a bounded domain of class \(C^2\). We assumed that \(b : \mathbb{R}^n \to \mathbb{R}\) is Lipschitz continous and satisfies the growth condition \(\left| b(p) \right| \leq C(\left| p \right| + 1)\) for some \(C\) and all \(p \in \mathbb{R}^n\). The existence of a solution \(u \in H^2(\Omega) \cap H_0^1(\Omega)\) of this problem is shown using Schauder’s Fixed Point Theorem, whose assumption of compactness of the corresponding operator is secured by the compactness of the embedding \(H^2(\Omega) \subset H^1(\Omega)\). The second example is the stationary Navier-Stokes problem, also with homogeneous boundary condition, on a bounded smooth domain \(\Omega\), \begin{align*} \begin{cases} -\mu \Delta \textbf{u} + (D \textbf{u})\textbf{u} + \text{grad } p = \textbf{f} &\text{on } \Omega\\ div \: \textbf{u} = 0 &\text{on } \Omega\\ \textbf{u} = 0 &\text{on } \Gamma, \end{cases} \end{align*} where the vector function \(\textbf{u} = (u_1, \dots , u_n)\) and the scalar function \(p\) are required functions, while \(\textbf{f}\) is given. Here the existence of a solution is shown using the Galerkin method, i.e. we have constructed a bounded sequence of approximate solutions and got the solution as the limit of its subsequence. To do this, we needed the compactness of the embedding \(H_0^1(\Omega) \subset L^2(\Omega)\).
Keywords
teoremi ulaganja Soboljevljevih prostora
Hölderovi prostori
Rellich-Kondrachovljev teorem
Schauderov teorem o fiksnoj točki
Galerkinova metoda
Keywords (english)
Sobolev embedding theorems of spaces
Hölder spaces
Rellich-Kondrachov Theorem
Schauder’s Fixed Point Theorem
Galerkin method
Language croatian
URN:NBN urn:nbn:hr:217:771305
Study programme Title: Applied Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2019-02-01 11:54:04