Naslov Linked Interpolation and Strain Invariance in Finite-Element Modelling of Micropolar Continuum
Naslov (engleski) Rad ne sadrži naslov na drugom jeziku.
Autor Sara Grbčić
Mentor Gordan Jelenić (mentor)
Mentor Adnan Ibrahimbegović https://orcid.org/0000-0002-6502-0198 (mentor)
Član povjerenstva Dragan Ribarić (predsjednik povjerenstva)
Član povjerenstva Zdenko Tonković (član povjerenstva)
Član povjerenstva Boštjan Brank (član povjerenstva)
Član povjerenstva Adnan Ibrahimbegović https://orcid.org/0000-0002-6502-0198 (član povjerenstva)
Član povjerenstva Pierre Villon (član povjerenstva) ISNI: 0000 0001 0908 5440
Član povjerenstva Maja Gaćeša (član povjerenstva)
Član povjerenstva Giulio Alfano https://orcid.org/0000-0002-8415-4589 (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Rijeci Građevinski fakultet Rijeka
Datum i država obrane 2018, Hrvatska
Znanstveno / umjetničko područje, polje i grana TEHNIČKE ZNANOSTI Temeljne tehničke znanosti Tehnička mehanika (mehanika krutih i deformabilnih tijela)
Univerzalna decimalna klasifikacija (UDC ) 53 - Fizika 51 - Matematika
Sažetak At the core of this thesis is an alternative continuum theory called the micropolar
(Cosserat) continuum theory, developed in order to describe the phenomena which
the classical continuum theory is not able to describe. In this theory, in addition to
the displacement eld, there also exists an independent microrotation eld and, in
order to completely describe such a material, six material parameters are needed.
In the framework of the nite-element method, new nite elements based on the
micropolar continuum theory in both linear and geometrically non-linear analysis
are developed using the displacement-based approach.
In the linear analysis, both two- and three-dimensional set-ups are analysed. In 2D
new families of triangular and quadrilateral nite elements with linked interpolation
of the kinematic elds are derived. In order to assure convergence of the derived
nite elements, they are modied using the Petrov-Galerkin approximation. Their
performance is compared against existing conventional micropolar nite elements
on a number of micropolar benchmark problems. It is observed that the linked
interpolation shows enhanced accuracy in the bending test when compared against
the conventional Lagrange micropolar nite element.
Next, the weak formulation is extended to 3D and a rst-order hexahedral nite
element enhanced with the incompatible modes is derived. The element performance
is assessed by comparing the numerical results against the available analytical solutions
for various boundary value problems, which are shown to be signicant for
the experimental verication of the micropolar material parameters. It is concluded
that the proposed element is highly suitable for the validation of the methodology
to determine the micropolar material parameters.
In the non-linear part, rst- and second-order geometrically nonlinear hexahedral
nite elements with Lagrange interpolation are derived. In order to test the
performance of the presented nite elements, a pure-bending non-linear micropolar
analytical solution is derived. It is observed that the elements converge to the
derived solution. The elements are tested on three additional examples where the
path-dependence and strain non-invariance phenomena are detected and assessed
in the present context. A procedure to overcome the non-invariance anomaly is
outlined.
Sažetak (engleski) Osnovu doktorske disertacije cini alternativna teorija kontinuuma poznata kao
mikropolarna (Cosseratova) teorija kontinuuma koja je razvijena kako bi opisala
fenomene koje nije moguce opisati klasicnom (Cauchyjevom) teorijom kontinuuma.
U teoriji, osim polja pomaka postoji takoder i nezavisno polje mikrorotacija te kako
bi se u potpunosti opisao takav materijal, potrebno je sest materijalnih parametera.
U okviru metode konacnih elemenata razvijeni su novi konacni elementi temeljeni
na mikropolarnoj teoriji u linearnoj i geometrijski nelinearnoj analizi koristenjem
direktne metode temeljene na pomacima.
U linearnoj analizi provedena je dvodimenzionalna i trodimenzionalna analiza.
U 2D razvijena je nova familija trokutnih i cetverokutnih elemenata s vezanom
interpolacijom kinematickih polja. Kako bi se osigurala konvergencija razvijenih
konacnih elemenata, elementi su modicirani Petrov-Galerkinovom aproksimacijom.
Performanse elemenata usporedene su s konvencionalnim mikropolarnim konacnim
elementima na nekoliko referentnih mikropolarnih primjera. Uoceno je da vezana interpolacija
pokazuje poboljsanu tocnost u odnosu na konkvencionalne mikropolarne
konacne elemente.
Nadalje, slaba forma prosirena je na 3D analizu i razvijen je sesterostranicni 3D
konacni element prvog reda obogacen nekompatibilnim oblicima. Performanse elementa
ocijenjene su usporedujuci numericke rezultate s dostupnim mikropolarnim
referentnim rjesenjima za koja je pokazano da su znacajna za eksperimentalno
utvrdivanje mikropolarnih parametara. Zakljuceno je da je predlozeni element izrazito
pogodan za numericku validaciju metodologije odredivanja mikropolarnih parametara.
U nelinearnoj analizi razvijeni su geometrijski nelinearni sesterostranicni 3D
konacni elementi prvog i drugog reda. Kako bi se testirala valjanost izvedenih
konacnih elemenata, razvijeno je i nelinearno mikropolarno analiticko rjesenje za
problem cistog savijanja. Uoceno je da razvijeni elementi konvergiraju ka izvedenom
analitickom rjesenju. Elementi su takoder testirani na tri dodatna primjera
gdje su uoceni fenomeni ovisnosti putanje ka rjesenju te neinvarijantnosti deformacija.
Predlozen je postupak za eliminaciju anomalije neinvarijantnosti deformacija.
Sažetak (francuski) Au cur de cette these est une theorie de continuum alternatif connue comme la
theorie micropolaire (ou la theorie des Cosserats), qui est developpee pour decrire
des phenomenes lesquels on ne peut pas decrire en utilisant la theorie classique.
Dans cette theorie, en complement du champ de deplacement, il existe aussi un autre
champ independant, celui de microrotation, et an de pouvoir decrire completement
un tel materiau, six parametres des matriaux sont necessaires. Dans le cadre de la
modelisation par elements nis, nouveaux elements fonde sur la theorie micropolaire
dans les regimes lineaire et geometriquement non lineaire sont dveloppes en utilisant
l'approche base au deplacements.
Dans le cadre de l'analyse lineaire, les problemes bi- et tri-dimensionnels sont
analyses. En 2D, les nouvelles familles des elements triangulaires et quadrilateres
sont developpes avec l'interpolation liee des champs cinematiques. Pour assurer la
convergence des elements nis developpes, ils sont modies en utilisant l'approximation
de Petrov-Galerkin. Leur performance est comparee avec celle des elements nis micropolaires
conventionnels dans un nombre des exemples de reference. Il est constate
que l'interpolation liee ameliore la precision dans le cas de
exion, par rapport a la
precision des elements nis micropolaires conventionnels.
Ensuite, la forme faible est etendue aux trois dimensions, et un element ni
hexaedrique du premier ordre, avec le champ de deplacement enrichi avec des modes
incompatibles est derive. La performance de l'element est evaluee en faisant la
comparaison des resultats numeriques avec les solutions analytiques disponibles pour
les divers problemes des valeurs limites, lesquels ont une signication consequente
pour la verication experimentale des parametres micropolaires. Enn, il est conclu
que l'element propose est tres bien adapte pour la validation de la methodologie an
de determiner les parametres micropolaires.
Dans le part non-lineaire, les elements de premier et deuxieme ordre avec
l'intepolation conventionnelle sont developpes. Pour tester la performance des elements
presentes, une solution analytique non-lineaire de la
exion pure est derivee. Il est
observe que les elements convergent vers la solution derivee. Les elements sont
testes sur les trois autres exemples ou la dependance du sentier et l'invariance de
deformation sont detectes. Une procedure pour resoudre ces anomalies est presentee.
Ključne riječi
micropolar theory
microrotation
linked interpolation
incompatible modes
geometrical nonlinearity
strain invariance
Ključne riječi (engleski)
mikropolarna teorija
mikrorotacija
vezana interpolacija
nekompatibilni oblici
geometrijska nelinearnost
invarijantnost deformacija
Ključne riječi (francuski)
theorie micropolaire
microrotation
l'interpolation liee
modes incompatibles
non-linearite geometriques
invariance de deformation
Jezik engleski
URN:NBN urn:nbn:hr:157:966946
Projekt Šifra: HRZZ-IP-11-2013-1631) Naziv: Configuration-dependent in non-linear finite-element analysis of structures Voditelj: Gordan Jelenić Pravna nadležnost: Hrvatska Financijer: HRZZ
Studijski program Naziv: Građevinarstvo; smjerovi: Hidrotehnika i geotehnika, Mehanika Smjer: Mehanika Vrsta studija: sveučilišni Stupanj studija: poslijediplomski doktorski Akademski / stručni naziv: doktor/doktorica znanosti, područje tehničkih znanosti (dr. sc.)
URL zapisa u katalogu http://opak.crolib.hr/cgi-bin/unicat.cgi?form=D1580333101
Vrsta resursa Tekst
Opseg 252 str.;30 cm
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2018-12-18 15:52:47