Naslov Whittaker modules and fusion rules for the Weyl vertex algebra, affine vertex algebras and their orbifolds
Naslov (hrvatski) Whittakerovi moduli i pravila fuzije za Weylovu verteks-algebru, afine verteks-algebre i njihove invarijantne podalgebre
Autor Veronika Pedić Tomić
Mentor Dražen Adamović (mentor)
Član povjerenstva Ozren Perše (predsjednik povjerenstva)
Član povjerenstva Dražen Adamović (član povjerenstva)
Član povjerenstva Tomislav Šikić (član povjerenstva)
Član povjerenstva Slaven Kožić (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Matematički odsjek) Zagreb
Datum i država obrane 2021-07-13, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Univerzalna decimalna klasifikacija (UDC ) 51 - Matematika
Sažetak The topic of this thesis are two problems in the vertex operator algebra theory: determination of fusion rules and the orbifold problem. For the fusion rules problem we study the example of Weyl vertex algebra, also known as the \(\beta\gamma\) ghost system. This is a nonrational vertex algebra, hence we give a first proof of a Verlinde formula for non-rational VOAs and confirm the Verlinde type conjecture given by D. Ridout and S. Wood in [70]. For the orbifold problem, we extend a theorem given in the Dong-Mason quantum Galois theory paper [41], from the category of ordinary modules to the whole category of weak modules. The proof given by Dong and Mason necessarily involves Zhu’s theory, and therefore cannot be extended to the category of weak modules. In particular, we study the example of Whittaker modules for the Weyl vertex algebra and Heisenberg VOA. In the first part of this thesis, we calculate fusion rules in the category of weight modules for the Weyl vertex algebra. Our proof is entirely vertex-algebraic and it uses the theory of intertwining operators for vertex algebras and the fusion rules for the affine vertex superalgebra \(L_1(\mathfrak(gl)(1|1))\). Moreover, we explicitly construct the intertwining operators involved. We also prove a general irreducibility result which relates irreducible weight modules for the Weyl vertex algebra \(M\) to irreducible weight modules for \(L_1(\mathfrak(gl)(1|1))\). In the second part of this thesis we prove a theorem on irreducible weak \(V\)-module \(W\) and an automorphism \(g\) of finite order. Here either \(W \circ g^i \ncong W\) for all \(i\), in which case \(W\) is an irreducible \(V^{\langle g \rangle}\)–module, or \(W \cong = W \circ g\) in which case \(W\) is a direct sum of \(p\) irreducible \(V^{\langle g \rangle}\)–modules. The key idea of our proof was to consider a “big” module for the vertex algebra, constructed as a direct sum of modules \(\bigoplus_i W \circ g^i\). Moreover, we present a counterexample for the expansion of our theorem to the case of infinitedimensional group \(G\) for the irreducible Weyl algebra modules of Whittaker type.
Sažetak (hrvatski) U ovoj disertaciji proučavamo dvije teme teorije verteks-algebri: računanje pravila fuzije te problem podalgebre fiksnih točaka. Verteks-algebra za koju računamo pravila fuzije je Weylova verteks-algebra ili \(\beta\gamma\) sistem. To je iracionalna verteks-algebra i naš dokaz je prvi dokaz Verlindeove formule za slučaj iracionalnih verteks-algebri te potvrđujemo slutnju iznesenu u članku D. Ridouta i S. Wooda [70]. Za problem podalgebre fiksnih točaka proširujemo teorem C. Donga i G. Masona iz njihova članka o kvantnoj Galoisovoj teoriji [41], s kategorije jakih modula na cijelu kategoriju slabih modula. Dokaz iznesen u [41] ne može se proširiti na slabe module jer koristi Zhuovu teoriju. Svoj rezultat primjenjujemo na Weylovu verteks-algebru, ali i Heisenbergovu algebru verteks-operatora te za obje promatramo kategoriju Whittakerovih modula. U prvom dijelu disertacije računamo pravila fuzije u kategoriji težinskih modula Weylove verteks-algebre. Naš je dokaz potpuno uklopljen u teoriju verteks-algebri te koristi teoriju operatora ispreplitanja verteks-algebri i pravila fuzije za afinu verteks-superalgebru \(L_1(\mathfrak(gl)(1|1))\). Štoviše, eksplicitno smo konstruirali operatore ispreplitanja koji se javljaju u iskazu. Također, pokazali smo općeniti rezultat koji povezuje ireducibilne težinske module Weylove verteks-algebre \(M\) s ireducibilnim težinskim modulima za \(L_1(\mathfrak(gl)(1|1))\). U drugom dijelu disertacije dokazali smo teorem o ireducibilnim slabim \(V\)–modulima \(W\) i automorfizmu \(g\) konačnog reda. Naime, pokazali smo da je ili \(W \circ g^i \ncong W\), za sve \(i\), i u tom slučaju je \(W\) ireducibilan \(V^{\langle g \rangle}\)–modul, ili je \(W \cong = W \circ g\), i u tom slučaju je \(W\) direktna suma \(p\) ireducibilnih \(V^{\langle g \rangle}\)–modula. Glavna ideja našeg dokaza je bila konstruirati “veliki” ˇ modul za verteks-algebru, tako da uzmemo direktnu sumu modula \(\bigoplus_i W \circ g^i\). Nadalje, dajemo protuprimjer za proširenje našeg teorema na slučaj beskonačno-dimenzionalne grupe automorfizama \(G\) za ireducibilne Whittakerove module Weylove verteks-algebre.
Ključne riječi
vertex algebra
vertex operator algebra
ordinary modules
weak modules
Whittaker modules
Weyl vertex algebra
Heisenberg vertex operator algebra
quantum Galois theory
orbifold problem
fusion rules
intertwining operators
Verlinde formula
fusion algebra
simple current
vertex algebra automorphism
lattice vertex superalgebra
Verma module
Clifford vertex algebra
Ključne riječi (hrvatski)
verteks-algebra
algebra verteks-operatora
jaki moduli
slabi moduli
Whittakerovi moduli
Weylova verteks-algebra
Heisenbergova algebra verteks-operatora
kvantna Galoisova teorija
problem podalgebre fiksnih točaka
pravila fuzije
operatori ˇ ispreplitanja
Verlindeova formula
fuzijska algebra
prosta struja
automorfizam verteksalgebri
verteks-superalgebra pridruzena rešetci
Vermaov modul
Cliffordova verteks-algebra
Jezik engleski
URN:NBN urn:nbn:hr:217:249471
Datum promocije 2022
Studijski program Naziv: Matematika Vrsta studija: sveučilišni Stupanj studija: poslijediplomski doktorski Akademski / stručni naziv: doktor/doktorica znanosti, područje prirodnih znanosti, polje matematika (dr. sc.)
Vrsta resursa Tekst
Opseg viii, 91 str.
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2022-01-24 12:12:23