Naslov Transportna i optička svojstva Diracovih polumetala
Naslov (engleski) Transport and optical properties of Dirac semimetals
Autor Josip Kordić
Mentor Ivan Kupčić (mentor)
Član povjerenstva Ivan Kupčić (predsjednik povjerenstva)
Član povjerenstva Zoran Rukelj (član povjerenstva)
Član povjerenstva Mario Novak (član povjerenstva)
Član povjerenstva Danko Radić (član povjerenstva)
Član povjerenstva Ivan Kokanović (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Fizički odsjek) Zagreb
Datum i država obrane 2022-09-27, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Fizika
Sažetak 2D i 3D Diracovi materijali klase su materijala koje se intenzivno istražuju posljednjih 15 godina, a koje karakterizira činjenica da disperzije vodljivih elektrona nalikuju disperziji relativističkih Diracovih elektrona. Od otkrića prvih Diracovih materijala, velika je pažnja posvećena objašnjenju njihovih transportnih i optičkih svojstava. U ovom diplomskom radu uspoređuju se ta svojstva u 2D i 3D Diracovim sustavima. Heksagonalni borov nitrid primjer je 2D sustava s konačnom Diracovom masom, a Bi_2Se_3 tipični je 3D Diracov polumetal. Za ta dva primjera načinjen je račun elemenata tenzora vodljivosti u aproksimaciji relaksacijskih vremena. Određene su ovisnosti tenzora vodljivosti o raznim parametrima, o dopiranju, o međuvrpčanom procjepu i o relaksacijskim vremenima. U tipičnim Diracovim polumetalima niskoenergetska optička vodljivost sastoji se od unutarvrpčanih i međuvrpčanih doprinosa. Unutarvrpčani doprinosi izračunati u ovom radu imaju očekivano jednostavne ovisnosti o dopiranju i o međuvrpčanom procjepu. Izračunati međuvrpčani doprinosi, s druge strane, imaju ovisnosti o parametrima modela koje se dobro slažu s rezultatima mjerenja na različitim 3D Diracovim materijalima. Pokazano je da se i temperaturna ovisnost optičke vodljivosti iz eksperimenata može lako razumjeti, ili koristeći račun na konačnim temperaturama, ili pomoću efektivnog modela u kojem međuvrpčana mjera relaksacija ovisi o temperaturi. Primijećena je velika razlika u strukturi transportnih koeficijenata između 2D i 3D Diracovih sustava. U 2D sustavima primijećena je značajna komponenta efektivnog broja nosioca naboja međuvrpčanog porijekla. U 3D sustavima ta je komponenta zanemariva. Porijeklo te razlike jest u dodatnom faktoru k u dk u 3D integralima s obzirom na dk u 2D integralima.
Sažetak (engleski) 2D and 3D Dirac materials have been intensively studied for the last 15 years. They are characterized by the fact that the dispersions of conduction electrons resemble the dispersion of relativistic Dirac electrons. Since the discovery of the first Dirac materials, great attention has been devoted to the explanation of their transport and optical properties. In this thesis, the optical properties of 2D and 3D Dirac systems are studied in detail. Hexagonal boron nitride is an example of a 2D system with finite Dirac mass, and Bi_2Se_3 is a typical 3D Dirac semimetal. For those two examples, the calculation of the elements of the conductivity tensor is performed by using the relaxation time approximation. The dependences of the conductivity tensor on various parameters, on doping, on the interband gap and on relaxation times, are determined. In typical Dirac semimetals, the low-energy optical conductivity consists of intraband and interband contributions. The intraband contributions are found to have simple dependences on the doping level and on the value of the interband gap. The interband contributions, on the other hand, have dependences on the model parameters that agree well with the results of measurements on different 3D Dirac materials. In this thesis, it is shown that the temperature dependence of the interband optical conductivity found in experiments can be easily understood, either by using the finite temperature approach, or by using an effective model in which the interband relaxation rate is temperature dependent. A large difference between transport coefficients in 2D and 3D Dirac systems is found. In 2D systems, there is a significant interband contribution to the effective number of charge carriers. In 3D systems, this component is negligible. The origin of this difference is in the additional factor k in dk in 3D integrals with respect to dk in 2D integrals.
Ključne riječi
Diracovi polumetali
grafen
heksagonalni borov nitrid
optička svojstva
transportna svojstva
dinamička vodljivost
Ključne riječi (engleski)
Dirac semimetals
graphene
hexagonal boron nitride
optical properties
transport properties
dynamical conductivity
Jezik hrvatski
URN:NBN urn:nbn:hr:217:643516
Studijski program Naziv: Fizika; smjerovi: istraživački Smjer: istraživački Vrsta studija: sveučilišni Stupanj studija: integrirani preddiplomski i diplomski Akademski / stručni naziv: magistar/magistra fizike (mag. phys.)
Vrsta resursa Tekst
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2022-10-20 09:32:28