Naslov Ponceletov teorem
Autor Mia Mesar
Mentor Matija Kazalicki (mentor)
Član povjerenstva Matija Kazalicki (predsjednik povjerenstva)
Član povjerenstva Boris Muha (član povjerenstva)
Član povjerenstva Tomislav Pejković (član povjerenstva)
Član povjerenstva Eduard Marušić-Paloka (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Matematički odsjek) Zagreb
Datum i država obrane 2018-07-18, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Sažetak Ponceletov teorem, koji govori o postojanju mnogokuta istovremeno upisanog jednoj a opisanog drugoj konici, jedan je od najpoznatijih i najviše proučavanih teorema u projektivnoj geometriji. Kao što je izloženo u ovom radu, ako postoji mnogokut koji je upisan jednoj konici i opisan drugoj, tada postoji beskonačno mnogo mnogokuta s jednakim brojem strana. Upravo se zbog prirode postojanja rješenja ovaj teorem često naziva i Ponceletov porizam, gdje riječ porizam dolazi iz Stare Grčke iz koje dolaze brojni matematičari važni za razvoj matematike, posebno geometrije. U prvom poglavlju riječ je o zatvaranju u trokut gdje smo stekli prvi dojam o Ponceletovom teoremu, odnosno stekli smo dojam da mora postojati nekakav uvjet da bi do zatvaranja u trokut uopće došlo ako su dane dvije kružnice u ravnini, različitih polumjera, jedna unutar druge. Postojanje uvjeta za konstrukciju trokuta koji je upisan jednoj, a opisan drugoj kružnici navodi na dokaz Eulerovog teorema kojim se pokazuje da se takav trokut može konstruirati ako je zadovoljena Eulerova relacija. Eulerov teorem zapravo je temelj dokaza specijalnog slučaja Ponceletovog teorema za kružnice i trokut koji se nalazi u Poglavlju 3, te navodi na analogan uvjet za postojanje četverokuta koji je upisan vanjskoj, a opisan unutarnjoj kružnici. Najvažniji dio ovog rada zapravo je dokaz Ponceletovog teorema. Zbog kompleksnosti i dubine ovog teorema dokaz je vrlo zahtjevan, pogotovo zato što ne postoji elementarni dokaz. Teorem smo dokazali algebarsko-geometrijskim dokazom po uzoru na njemačkog matematičara Adolfa Hurwitza. U završnom dijelu rada izložena je mehanička interpretacija Ponceletovog teorema.
Sažetak (engleski) Poncelet theorem is one of the most important and most explored theorems of projective geometry. This is a theorem about closing property for a sequence of polygons inscribed in one and circumscribed about the other given conic in the same plane. If described polygon exists, then there are infinitely many polygons with the same number of sides, inscribed in one and circumscribed about the other conic. The Poncelet theorem is usually called the Poncelet porism, where porism originates from Ancient Greece, home of many famous mathematicians important for the development of mathematics, especially geometry. First chapter is about special polygon, triangle. We have noticed that we need a special condition for its existence if there are two given circles, one inside the other, in the same plane. That condition is well known as ”Euler’s formula” which is specified in Euler’s theorem, proved in Chapter 2. Euler’s theorem is very important for a special case of Poncelet theorem, Poncelet theorem for triangle and two given circles in Chapter 3. Using analogy and special condition for quadrilaterals, there exists a quadrilateral inscribed in one, and circumscribed about the other given circle. The most important part is the proof of Poncelet theorem. Because of its complexity, a proof is very difficult especially because there is no elementary proof. We use an algebraic - geometric method to prove the theorem like the German mathematician Adolf Hurwitz. In the last chapter, we focus on the mechanical interpretation of Poncelet’s theorem.
Ključne riječi
Poncelet
mnogokut
konika
projektivna geometrija
porizam
Euler
Adolf Hurwitz
Ključne riječi (engleski)
Poncelet
polygon
conic
projective geometry
porism
Euler
Adolf Hurwitz
Jezik hrvatski
URN:NBN urn:nbn:hr:217:524645
Studijski program Naziv: Matematika; smjerovi: nastavnički Smjer: nastavnički Vrsta studija: sveučilišni Stupanj studija: diplomski Akademski / stručni naziv: magistar/magistra edukacije matematike (mag. educ. math.)
Vrsta resursa Tekst
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2018-12-20 11:06:51