Naslov Interpolacijski polinomi i izvedene nejednakosti za konveksne funkcije višeg reda
Naslov (engleski) Interpolation polynomials and derived inequalities for the higher order convex functions
Autor Gorana Aras-Gazić
Mentor Ana Vukelić (mentor)
Član povjerenstva Julije Jakšetić (predsjednik povjerenstva)
Član povjerenstva Sanja Varošanec (član povjerenstva)
Član povjerenstva Ana Vukelić (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Matematički odsjek) Zagreb
Datum i država obrane 2016-03-01, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Univerzalna decimalna klasifikacija (UDC ) 51 - Matematika
Sažetak U disertaciji su promatrani Lidstoneovi i Hermiteovi interpolacijski polinomi te Eulerovi integralni identiteti koji proširuju dobro poznatu formulu za razvoj funkcije preko Bernoullijevih polinoma danu u [31]. Istraživanje je provedeno za konveksne funkcije višeg reda. Korištenjem Lidstoneovih i Hermiteovih interpolacijskih polinoma s uvjetima na Greenovu funkciju te Eulerovog identiteta dobivene su generalizacije Jensenove nejednakosti i njezinog obrata za regularnu realnu (s predznakom) Borelovu mjeru, te kao posljedica generalizacije Hermite-Hadamardove nejednakosti. Također, iz teorema majorizacije, Lidstoneovih i Hermiteovih interpolacijskih polinoma i uvjeta na Greenovu funkciju, dobiveni su rezultati vezani za diskretnu i integralnu Jensenovu nejednakost i njen obrat te diskretnu Jensen-Steffensenovu nejednakost. Dane su i ocjene za identitete povezane s ovim nejednakostima korištenjem Čebiševljevog funkcionala te nejednakosti tipa Grüssa i Ostrowskog za ove funkcionale. Razmatrajući Cauchyjeve reprezentacije greške interpolacijskih polinoma, izvedene su generalizacije Hermite-Hadamardove nejednakosti. Kao specijalni slučaj, kod Hermiteovih interpolacijskih polinoma, promatrane su i generalizacije za čvorove ortogonalnih polinoma. Dane su i ocjene za ostatak u kvadraturnim formulama Hermiteovog tipa razmatranjem integralne reprezentacije greške Hermiteovih interpolacijskih polinoma te korištenjem Hölderove nejednakosti i nekih nejednakosti za Čebiševljev funkcional. Korištenjem dobivenih generalizacija konstruirani su linearni funkcionali te su promatrani teorem srednje vrijednosti, n-eksponencijalna konveksnost, eksponencijalna konveksnost i log konveksnost za ove funkcionale. Dano je nekoliko primjera familija funkcija koje nam omogućuju konstrukciju velike familije eksponencijalno konveksnih funkcija te sredine Stolarskyjevog tipa koje imaju svojstvo monotonosti.
Sažetak (engleski) The thesis deals with the Lidstone and Hermite interpolating polynomials and Euler's integral identities which extend the well known formula for expansion of function with Bernoulli polynomials, which is given in [31]. The research is presented for the higher order convex functions. After the Introduction, the thesis is divided into five chapters. The basic concepts which are used in the thesis are given in the first chapter. In the second chapter, using Lidstone's and Hermite's interpolating polynomials with conditions on the Green functions, and also Euler's identity, generalizations of Jensen's inequality and converses of Jensen's inequality for regular, real (signed) Borel measure are obtained, and as a consequence Hermite-Hadamard inequality is presented. In the third chapter, using majorization theorems, Lidstone's and Hermite's interpolating polynomials and conditions on the Green function, results concerning Jensen's inequality, its converses and Jensen-Steffensen's inequality is also developed in both the integral and discrete case. Using Chebyshev functionals, bounds for identities related to these inequalities are observed and Grüss type inequalities and Ostrowsky type inequalities for these functionals are obtained. Considering Cauchy's error representation of the interpolation polynomials, corresponding generalizations of the Hermite-Hadamard inequality are also obtained. As a special case, for Hermite's interpolating polynomials, generalization of the Hermite-Hadamard inequality for the zeros of orthogonal polynomials is considered. By using these generalizations, at the end of second, third and fourth chapter, linear functionals are constructed and mean value theorems, n-exponential convexity, exponential convexity and log-convexity for these functionals are discussed. Furthermore, some families of functions which enable us to construct a large families of functions that are exponentially convex and also Stolarsky type means with their monotonicity are given. In the last chapter, integral error representation related to Hermite's interpolating polynomial is also considered and some new estimations for the remainder in quadrature formulae of Hermite type is derived by using Hölder's inequality and some inequalities for the Chebyshev functional.
Ključne riječi
Lidstoneovi interpolacijski polinomi
Greenova funkcija
n-konveksna funkcija
potpuno konveksna funkcija
Jensenova nejednakost
Hermite-Hadamardova nejednakost
teoremi srednje vrijednosti Cauchyjevog tipa
n-eksponencijalna konveksnost
eksponencijalna konveksnost
log-konveksnost
sredine
Hermiteovi interpolacijski polinomi
majorizacija
Jensen-Steffensenova nejednakost
Čebiševljev funkcional
nejednakost Grüssovog tipa
nejednakost tipa Ostrowskog
ortogonalni polinomi
kvadraturne formule
Hölderova nejednakost
Ključne riječi (engleski)
Lidstone interpolating polynomial
Green function
n-convex function
completely convex function
Jensen's inequality
Hermite-Hadamard inequality
Cauchy type mean value theorems
n-exponential convexity
exponential convexity
logconvexity
means
Hermite interpolating polynomial
majorization
Jensen-Steffensen inequality
Chebyshev functional
Grüss type inequality
Ostrowsky type inequality
orthogonal polynomials
quadrature formulae
Hölder's inequality
Jezik hrvatski
URN:NBN urn:nbn:hr:217:530078
Studijski program Naziv: Matematika Vrsta studija: sveučilišni Stupanj studija: poslijediplomski doktorski Akademski / stručni naziv: doktor/doktorica znanosti, područje prirodnih znanosti, polje matematika (dr. sc.)
Vrsta resursa Tekst
Opseg vi, 127 str.
Način izrade datoteke Izvorno digitalna
Prava pristupa Pristup korisnicima matične ustanove
Uvjeti korištenja
Datum i vrijeme pohrane 2019-03-06 12:30:16