Naslov Matematička analiza socijalnih mreža
Autor Tomislav Horina
Mentor Ivica Nakić (mentor)
Član povjerenstva Ivica Nakić (predsjednik povjerenstva)
Član povjerenstva Tomislav Berić (član povjerenstva)
Član povjerenstva Boris Širola (član povjerenstva)
Član povjerenstva Tina Bosner (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Matematički odsjek) Zagreb
Datum i država obrane 2018-09-27, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Sažetak Rad prikazuje osnovne teorije mreža i parametre koji opisuju mreže, opis socijalnih mreža, načine prikupljanja i obrade podataka socijalnih mreža, modele slučajnih mreža te istraživanje o mogućnosti stvaranja sličnosti slučajne mreže slične socijalne mreže putem raznih modela mreže slučaja. Mreža je pojednostavljeni prikaz sustava koji se sastoji od međusobno povezanih elemenata. Na primjer, mreža može simulirati povezanost gradova, atome u molekulama, odnos između ljudi/organizacija i slično. U socijalnim mrežama, čvorovi predstavljaju ljude ili grupe ljudi, a bridovi neki oblik interakcije između njih. Za prikupljanja podataka socijalnih mreža koriste se API--ji (aplikacijsko programsko sučelje), web crawleri (pauk), … U radu je provedeno istraživanje pomoću paketa NetworkX napisanog u programskom jeziku Python gdje su proučavani modeli kreiranja slučajne mreže sa sličnostima socijalne mreže. Ispitivani su sljedeći modeli slučajne mreže: Erdös--Renijev, Barabási--Albertov, Watts--Strogatzov i eksponecijalne slučajne mreže. Provjera sličnosti između mreža napravljena je provjerom jesu li paramteri slučajne mreže u zadnim vrijednostima parametara koji su dobiveni iz podataka socijalnih mreža (Facebook, Google Plus, Twitter) sa stranice sveučilišta Stanford [9]. Korišteni parametri su gustoća, prosječna udaljenost puta, tranzitivnost, globalni indeks efikasnosti i Katz centralnost. Negativan rezultat istaživanja ostvarili su Erdös—Renijevi i Barabási--Albertovi modeli slučajne mreže zbog male tranzitivnosti, dok je kod eksponecijalne slučajne mreže bio problem i prosječna duljina puta. Pozitivan rezultat istraživanja je dobiven kod Watts--Strogatzove slučajne mreže.
Sažetak (engleski) The paper presents basic network theory as well as parameters describing networks, social networks, ways of collecting and processing social network data, random network models, and exploring the probability of creating a random network similar to a social network through various network case models. The network is a simplified representation of a system consisting of interconnected elements. For example, the network can simulate the association of cities, atoms in molecules, relationship between people/organizations and similar. In social networks, nodes represent people or groups of people and bridges are some form of interaction between them. To collect social network data, use APIs (application program interface), web crawlers,… In this paper, research was conducted using NetworkX package written in Python programming language, where models of random networking with similarities in the social network were studied. The following random network models were investigated: Erdös– Renije, Barabási –Albert, Watts–Strogatz and exponential random graph. Verification of network similarities was connected by verifying whether random network parameters have the default values of the parameters obtained from the social network data Facebook, Google Plus, Twitter) from the Stanford University website ([9]). The parameters used are density, average shortest path length, transitivity, global efficiency index and Katz centrality. Negative result of the research was achieved by Erdös–Renije and Barabási –Albert models of random network due to low transitivity, while in exponential random network the problem was the average length of the path. A positive result of the research was obtained for Watts–Strogatz’s random network.
Ključne riječi
teorija mreža
socijalne mreže
API
aplikacijsko programsko sučelje
NetworkX
Python
modeli slučajne mreže
Erdös– Renije
Barabási –Albert
Watts–Strogatz
Ključne riječi (engleski)
network theory
social netowrks
API
application program interface
NetworkX
Python
random network models
Erdös– Renije
Barabási –Albert
Watts–Strogatz
Jezik hrvatski
URN:NBN urn:nbn:hr:217:206910
Studijski program Naziv: Računarstvo i matematika Vrsta studija: sveučilišni Stupanj studija: diplomski Akademski / stručni naziv: magistar/magistra računarstva i matematike (mag. inf. et math.)
Vrsta resursa Tekst
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2019-04-24 12:27:14