Naslov Utjecaj anizotropije trodimenzionalne slobodnoelektronske vrpce pod utjecajem periodičkog potencijala na stabilnost kondenzata
Naslov (engleski) The influence of anisotropy of three-dimensional free electron band under periodic potential on the stability of condensate
Autor Marin Spaić
Mentor Danko Radić (mentor)
Član povjerenstva Danko Radić (predsjednik povjerenstva)
Član povjerenstva Miroslav Požek (član povjerenstva)
Član povjerenstva Krešimir Kumerički (član povjerenstva)
Član povjerenstva Mario Basletić (član povjerenstva)
Član povjerenstva Denis Sunko (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Fizički odsjek) Zagreb
Datum i država obrane 2020-02-14, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Fizika
Sažetak Pojava valova gustoće naboja (eng. charge density waves - CDWs) tradicionalno je povezana sa tzv. kvazi-jednodimenzionalnim materijalima visoko anizotropne Fermijeve plohe koja zadovoljava uvjet gniježđenja što omogućava pojavu Peierlsove nestabilnosti. Međutim, realizacija valova gustoće naboja u materijalima čije su Fermijeve plohe topološki zatvorene i koje ne zadovoljavaju uvjet gniježđenja, zahtijeva kvalitativno drukčiji mehanizam stabilizacije CDW uređenja. Upravo takav mehanizam predložili su Kadigrobov i suradnici u [Kadigrobov et al. Phys. Rev. B (2018)] za slučaj 2D izotropne paraboličke vrpce i on se zasniva na topološkoj rekonstrukciji elektronske vrpce podvrgnute periodičkom potencijalu koji će topološki transformirati inicijalno zatvorenu Fermijevu plohu u otvorenu (u prikazu ponovljene zone). Tema ovog diplomskog rada je poopćenije ovog mehanizma za slučaj trodimenzionalne slobodnoelektronske vrpce te ispitivanje utjecaja anizotropije na mogućnost stabilizacije valova gustoće naboja. Nakon kratkog uvoda u fenomen valova gustoće naboja u kvazi-jednodimenzionalnim materijalima i mehanizam njihovog nastanka, odnosno Peierlsovu nestabilnost, dajemo kvalitativnu skicu mehanizma topološke rekonstrukcije vrpce te određujemo utjecaj pojave CDW uređenja na elektronsku disperziju trodimenzionalne slobodnoelektronske vrpce u okviru aproksimacije srednjeg polja. Potom računamo gustoću stanja za dvodimenzionalnu i trodimenzionalnu rekonstruiranu vrpcu te uvodimo anizotropiju varirajući efektivnu masu u jednom smjeru u originalnoj disperziji. Utvrđuje se da ovaj način uvođenja anizotropije ne dovodi do kvalitativne promjene u gustoći stanja te nam stoga ne dozvoljava da prirodno povežemo naše rezultate s rezultatima za dvodimenzionalnu vrpcu. Zbog toga se okrećemo novom načinu tretiranja anizotropnog sustava kao izotropnog sustava koji egzistira u prostoru necjelobrojne dimenzionalnosti što, ako već nema sa geometrijskog, ima smisla sa fizikalnog gledišta. U ovakvom tretmanu, variranje dimenzije u rasponu d ϵ [2, 3] dovodi do ”glatkog” prijelaza gustoće stanja 2D vrpce u pripadnu gustoću stanja 3D vrpce. Nakon toga, okrećemo se ispitavanju energetske ”bilance” sustava. Kao preliminarni rezultat, metodom Lagrangeovog multiplikatora, pokazujemo da je smanjenje energije vrpce (uz ograničenje očuvanja broja elektrona) najveće ukoliko Fermijeva energija ostane nepromijenjena prilikom rekonstrukcije vrpce. Ovaj rezultat je općenit utoliko što ne ovisi o detaljima promjene gustoće stanja sustava te upućuje na činjenicu da će smanjenje energije potjecati isključivo od redistribucije popunjenih stanja od viših prema nižim energijama uzrokovane promjenom gustoće stanja. Ovaj rezultat potom uvrštavamo u uvjet očuvanja broja elektrona što nam omogućava da numeričkim rješavanjem jednadžbe odredimo optimalni valni vektor CDW parametra uređenja koji se, kako povećavamo dimenziju, sve više razlikuje od vrijednosti 2k_F0 koja se pojavljuje u Peierlsovoj nestabilnosti, gdje je k_F0 Fermijev valni broj nerekonstruirane vrpce. Koristeći optimalni valni vektor, računamo relativno smanjenje energije vrpce ΔE/E_0 te dodavanjem pozitivnog fononskog doprinosa (elastična energija statičke deformacije rešetke) utvrđujemo da se val gustoće naboja može stabilizirati za bilo koju dimenziju sustava d ϵ [2, 3] ukoliko je bezdimenzionalna konstanta elektron-fonon vezanja λ veća od kritičnog iznosa λ_c koji raste s porastom dimenzije. U tom smislu, možemo zaključiti da CDW uređenje predstavlja kvantni fazni prijelaz s obzirom na parametar λ koji određuje relativnu jakost elektron-fonon interakcije.
Sažetak (engleski) The phenomenon of charge density waves (CDWs) is traditionally related to so called quasi-one-dimensional materials with a highly anisotropic Fermi surface that satisfies the nesting condition which brings about the possibility of Peierls instability. However, the realization of density waves in materials with closed Fermi surfaces which don’t satisfy the nesting condition, requires a qualitatively different mechanism of CDW stabilization. Such a mechanism was proposed by Kadigrobov et al. [Kadigrobov et al. Phys. Rev. B (2018)] for a case of 2D isotropic parabolic band and it is based on topological reconstruction of electron band subjected to a periodic potential causing a topological transformation of initially closed Fermi surface to an open one. The subject of this master’s thesis is the generalization of the proposed mechanism to the case of three-dimensional free-electron band and the investigation of the effect of anisotropy on the possibility of CDW stabilization. After a short introduction to the phenomenon of charge density waves in quasi-one-dimensional materials and the mechanism of their stabilization, namely Peierls instability, we give first a qualitative sketch of the mechanism of topological reconstruction and then calculate the effect of CDW ordering on electron dispersion of a three-dimensional free electron band using the mean field approximation. After that, we calculate the density of states (DOS) both for the case of two- and three-dimensional bands where anisotropy is introduced by varying the effective mass corresponding to a chosen direction in the original dispersion. We find that such a method of introducing anisotropy doesn’t bring about any qualitative change in the calculated density of states and, therefore, makes it impossible to connect our results for a 3D band with the results for a 2D band. For this reason, we turn to a new way of treating an anisotropic system as an isotropic system living in a space of non-integer dimensionality which seems nonsensical from a purely geometrical point of view, but makes sense from a physical one. Such a treatment enables us to obtain a smooth crossover of density of states as we vary the dimension in the range d ϵ [2, 3]. After that, we turn our attention to the ”energetics” of the system. As a preliminary result we establish, using the method of Lagrange multipliers, that the decrease of band energy due to band reconstruction is maximal (subject to the constraint of electron number conservation) when the Fermi energy remains as it was before the reconstruction. This result is general in so far as it does not depend on the details of the change in the density of states and it points to the fact that the energy decrease will be solely the effect of redistribution of filled states from higher toward lower energies caused by the change in DOS. Plugging this result back in the equation expressing electron number conservation enables us to find the optimal CDW wave vector of the CDW order parameter which differs more and more significantly from the value 2k_F0 required by Peierls instability as the dimension gets higher, where k_F0 is a Fermi wave number of the initial band. Using the optimal wave vector we calculate the relative decrease of band energy ΔE/E_0 which, when combined with the mean field phonon contribution (elastic energy of static lattice deformation), enables us to find that CDW stabilization via topological reconstruction is possible for all dimensions in range d ϵ [2, 3] if the dimensionless electron-phonon coupling constant λ is larger than its critical value λ_c which increases with dimension. In that sense, we conclude that CDW ordering is a quantum phase transition with respect to a parameter λ that determines the relative strength of electron-phonon interaction.
Ključne riječi
valovi gustoće naboja
topološka rekonstrukcija vrpce
anizotropija
necjelobrojna dimenzija
Ključne riječi (engleski)
charge density waves
topological reconstruction of the electron band
anisotropy
non-integer dimension
Jezik hrvatski
URN:NBN urn:nbn:hr:217:180639
Studijski program Naziv: Fizika; smjerovi: istraživački Smjer: istraživački Vrsta studija: sveučilišni Stupanj studija: integrirani preddiplomski i diplomski Akademski / stručni naziv: magistar/magistra fizike (mag. phys.)
Vrsta resursa Tekst
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup Datum isteka embarga: 2021-02-14
Uvjeti korištenja
Datum i vrijeme pohrane 2020-03-10 13:40:05